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INTRODUCTION 

The reason for writing this article was the work of Japanese scientists [1]. Our attention was 

drawn to the title of this paper, which includes the keywords CSIDH (Commutative Supersingular 

Isogeny Diffie-Hellman [2]) and Edwards curves [3, 4]. This topic intersects, in particular, with 

works [5, 6, 7] and our research [8 - 14]. 

The most interesting results in this topic, in our opinion, were obtained in [5], which offers the 

fastest today arithmetic for computing odd-degree isogenies on complete Edwards curves [3] using 

the Farasakhi-Hosseini -coordinates [6] and the theorems of [7 ]. 

Since the term "Edwards curves", first defined in [4] for all curves 
dE  with one parameter d , is 

ambiguous (does not take into account the values of the quadratic character )(d ), the question 

arises: what kind of Edwards curves are we talking about in [1]? The authors of [1] removed this 

question with the new term "purely Edwards curves", meaning by it all curves
dE  with one parame-

ter, except the complete Edwards curves. For them obviously 1,1)(  dd . 

In our classification [11, 12], such curves are called “quadratic Edwards curves” (Section 1). 

Within this class of Edwards curves there are no quadratic twist pairs on which the CSIDH algo-

rithm is based. Thus, we found a contradiction already in the title of [1], which proves its fallacy. 

The purpose of this article is a critical analysis of the incorrect statements and conditions of the the-

orems in [1], a refutation of its concept, and, as a constructive, a proof and illustration of the correct 

solution of the problem.  

In [8], we proved two theorems adapting formulas of odd degree isogenies for Edwards curves 

[7] to twisted Edwards curves and to their computing in Farasakhi-Hosseini ):( ZW -coordinates 

[6]. In the next paper [9], using a simple model, it was shown how the CSIDH algorithm works on 

the basis of supersingular quadratic and twisted Edwards curves connected as quadratic twist pairs, 

some estimates of the calculation cost in projective ):( ZW Farasakhi-Hosseini coordinates were de-

tailed. 

This article is, to a certain extent, a continuation of the previous work [9]. Supersingular quad-

ratic and twisted Edwards curves with the same order ,3,21  mnpN m

E
 ( n - odd) exist only 

for 8mod7p . The minimum even cofactor of the order of such curves is 8, then for the CSIDH al-

gorithm with an odd  


K

i iln
1

 the field modulus, we should choose .18  np  In order to adapt 

the definitions for the arithmetic of Edwards curves isogenies and curves in the Weierstrass form, 

we use the modified point addition law [11, 12] with the change of coordinates yx    . 

Section 1 gives a brief overview of the properties of complete, quadratic, and twisted su-

persingular Edwards curves (SEC) [13,14]. In Section 2, specific aspects of the implementation of 

the CSIDH algorithm model on quadratic and twisted SEC are considered, and a modification of the 

algorithm [2] is given. Since all the necessary calculations in the CSIDH algorithm are reduced only 

to field operations for calculating the isogenic curve parameter and scalar point multiplications, it is 

proposed to abandon the calculation of the isogenic function )(R  of random point R . In section 3, 

we give critical analysis of theorems, lemmas and statements of article [1], their incorrectness and 

fallacy, substantiate the conclusion about the inconsistency of the concept and title of the article.  

The implementation of the CSIDH algorithm in [1] (section 6.2) relies on complete Edwards curves, 

which does not correspond to the problem posed in the paper. Instead of hypothetical curves 

]1[ dE  with one parameter in [1], one should actually use the known twisted SEC with two pa-
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rameters and other existence conditions. The proof of Theorem 2 on quadratic twist of curves in the 

generalized Edwards form is given. In support of our conclusions, further in Section 4, an example 

of Alice and Bob's calculations in the Diffie-Hellman secret sharing scheme on quadratic and twist-

ed SEC is given. Omitting the problem of computational cost, in this paper we mainly use affine 

coordinates. 

 

1. PROPERTIES OF SUPERSINGULAR CURVES IN EDWARDS FORM 

Let us consider some specific properties of supersingular Edwards curves (SEC) [13, 14]. An 

elliptic curve in generalized Edwards form [11] over a prime field 
pF is defined by the equation 

.1,,,,1: *2222

,  ddaFdaydxayxE pda                                        (1) 

If a quadratic character 1)( ad , curve (1) is isomorphic to the complete Edwards curve [3, 4] 

with one parameter d  

.1)(,1: 2222  dydxyxEd                                                     (2) 

SEC of this class exist for 4mod3p , and their order is 4mod01  pN E . 

Let 1)()(,1)(  daad  , then the curve (1) is isomorphic to the quadratic Edwards curve [11] 

1,,1)(,1: 2222  ddydxyxEd  .                                            (3) 

In contrast to (2), the parameter d  of curve (3) is a square. SEC of class (3) have an order 

8mod01  pNE  and exist over a field 
pF  for 8mod1p . For both curves (2) and (3) we ac-

cept a parameter 1a , and they are called as curves with one parameter. In [4], curve (3) together 

with curve (2) are defined as Edwards curves. At the same time, the difference in the quadratic 

characters of the parameters d  leads to radically different properties of curves (2) and (3) [11, 12]. 

We discuss this below and in Section 3. 

The twisted Edwards curve was defined in [11] as a particular case of curve (1) for 
.1)()(,1)(  daad   

The new classification of curves in the generalized Edwards form (1) in [11, 12] divides them 

into 3 non-intersecting (non-isomorphic) classes of complete, quadratic, and twisted Edwards 

curves. This avoids the ambiguity and difficulties that arise in the still existing terminology, which 

allows the inclusion of one class of Edwards curves in another. In the pioneering work [4], in par-

ticular, authors define the twisted Edwards curve with two parameters as curve (1). As a result any 

curve in Edwards form can be called twisted Edwards curve. However, already in [4] itself, statis-

tics are given for the number of complete, twisted Edwards curves and Edwards curves, which can-

not be sorted out. Another example of ambiguous terminology is the work [1], the title of which 

contains the term "Edwards curves", but according to [4], it includes "complete Edwards curves". 

The question arises: what kind of curves are we talking about? 

The logic of classification of curves in the generalized Edwards form (1) in [11, 12] is simple. 

Since the introduction of a new parameter into the equation (1) in the Edwards form is necessary 

only in one case: at 1)()(,1)(  daad  , it is logical to keep the term “twisted Edwards 

curves” [11] for curves with this condition. In this case, the class "twisted Edwards curves" be-

comes unique up to isomorphism (it has no curves in other classes). Another such unique class is 

the class of “complete Edwards curves” [3, 4] with the condition 1)( ad . Finally, the third 

unique class with the condition 1)()(,1)(  daad   is the class of "quadratic Edwards 

curves". This term, proposed by us [11], is justified by the property 1)( d  , which is different 

from the conditions of the other two classes. To a certain extent, it can also be justified by the term 

“quadratic twist”, which is exactly what the curves of the corresponding classes (quadratic and 
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twisted curves) are connected. It is important that there are exactly three classes of curves (1), each 

with its own name, and no confusion. 

In the application to the CSIDH algorithm on SEC, we define a pair of quadratic and twisted 

SEC [11] as a pair of quadratic twist with parameters .1)(,,,1)(  ccddcaaad 


 (see 

Theorem 2 in Section 3). Since SEC exist only for 4mod3p  [13], we can take 

,,1,1,1 ddaac   where da,  are the parameters of a quadratic curve, and respective-

ly, da , of a twisted curve. In other words, the transition from a quadratic to a twisted curve and 

vice versa we can define
ddd EEE  ,1,1
. Then the twisted SEC equation for 8mod7p  from 

(1) we can written as 

.1)(.,1,,1: *2222

,1  ddFdydxyxE pd                                    (4) 

Here, the conditions for the modulus p  and order of the curve 8mod01  pNE  are simi-

lar to curves (3). For 8mod7p  , of course, also 4mod3p  holds. 

 Having fixed the parameter 1a  and running through all admissible values of d , we can 

determine the set of cardinalities of  all 
2

3p
 curves of each of the 3 classes of curves (1) (includ-

ing isomorphic curves). Any twisted SEC one can reduce to the form (4). 

The order tpNE  1  of an elliptic curve over a prime field pF  is determined based on the 

trace t  of the characteristic equation 02  pt  of the Frobenius endomorphism, where for 

some point ).( yxP   the Frobenius endomorphism ),()( pp yxP  . For a quadratic twist curve, the 

corresponding order will be tpN
t

E  1 . An elliptic curve is supersingular if and only if, over 

any extension of a prime field pF , the trace of the Frobenius equation is ,mod0 pt    in this case 

pp   ,2  in an imaginary quadratic field [13, 15]. A pair of curves E  and tE is some-

times referred to ],1[ E ]1[ E  as two solutions of the quadratic Frobenius equation. In an al-

gebraic closure pF , a supersingular curve does not contain points of order p . Over a prime field pF , 

such a curve always has order 1 pNE  . 

So, quadratic and twisted SEC as a pair of quadratic twist have the same order 1 pNE  but 

different structure. All their points are different (except two points )1,0(  ), so isogenies of the same 

degree have different kernels. Both curves are non-cyclic with respect to points of the 2-nd order 

(contain 3 points of the 2-nd order each, two of which are exceptional points 1,2   , 
a

D
d

 
    
 

 [4, 

11]). Quadratic SEС (3), in addition, contains two exceptional points of the 4-th order 

1
1

,   .F
d

 
    

 
 The presence of a noncyclic subgroup of the 4-th order containing 3 points of the 

2-nd order limits the number 8 to the minimum even cofactor of the order )(8 oddnnNE   of 

quadratic and twisted Edwards curves [11]. In general, their order is 3,2  mnN m

E  . The maxi-

mum order of points of these curves is .42/ nNE   It is important that points of even orders are not 

involved in the calculations of the CSIDH algorithm (after the first multiplication of a random point 

P  of maximum order by 4, we have a point of odd order n ). 

For the curve (1) J  -invariant equal [4, 15] 

0)(,
)(

)14(16
),(

4

322





 daad

daad

adda
daJ .                                  (5) 
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This parameter distinguishes isogenic (with different J -invariants) and isomorphic (with equal 

J -invariants) curves. Since the J -invariant retains its value for all isomorphic curves and quadratic 

twist pairs [15], it is the same for a pair of twisted and quadratic SEC ( 1a  ). It is a useful tool 

both in finding supersingular curves and in constructing isogeny chain graphs. One of the properties 

of the J -invariant is 

)()( 1 dJdJ . 

For the considered classes of SEC, the replacement 1 dd  gives an isomorphism, and for 

complete Edwards curves (2) it gives a quadratic twist. 

 

2. MODIFICATION OF CSIDH ALGORITHM ON QUADRATIC AND TWISTED 

EDWARDS CURVES 

The PQC CSIDH (Commutative SIDH) algorithm proposed by the authors of [2] for solving 

the same key exchange problem (SIDH), but based on isogenic mappings of supersingular elliptic 

curves as additive Abelian groups. Such a mapping over a prime field 
pF  as the class group action 

is defined [2] and is commutative. In comparison with the well-known original CRS scheme (Cou-

veignes (1997), Rostovtsev, Stolbunov (2004)) on non-supersingular curves, the use of isogenies of 

supersingular curves made it possible to substantial speed up the algorithm and achieve the smallest 

known key size (512 bits in [2]). 

Let the curve E  of order 1 pNE  contain points of small odd orders .,...,2,1, Kili   Then 

there is an isogenic curve Eof the same order as a il -degree map: ElEE i *][ . The repetition 

of this operation ie times we denote El ie

i *][  . The values of the isogeny exponents Zei   determine 

the length || ie  of the chain of isogenies of degree il . In [2], an interval of exponential values 

][ mem i  is accepted ( 5m ), which provides a security level of 128 bits for a quantum com-

puter attack. Negative values of the exponent mean a transition to a quadratic twist supersingular 

curve. 

The implementation of the CSIDH algorithm mainly uses fast arithmetic of Montgomery ellip-

tic curves 2,232  СxСxxy  containing 2 points of the 4-th order and, accordingly, having 

an order ).(41 oddnnpNE   [2]. In [5], the CSIDH algorithm implemented on complete SEC 

of the same order. In this paper, we use quadratic and twisted SEC in the CSIDH algorithm, which 

have the same speed performance as complete Edwards curves [5]. In [8] we proved 2 theorems for 

implementation such possibility. With a minimum cofactor of 8, the order of twisted and quadratic 

SEC is nNE 8  . Thus, for these SEC classes with order ,18  pnNE .
1 


K

i iln  the field mod-

ulus in the CSIDH algorithm we chosen as 8mod118
1

  

K

i ilp  . 

Non-interactive Diffie-Hellman key exchange includes the following steps [2]: 

1. Choice of parameters. For small odd primes il , compute  


K

i iln
1

 , where the value K is 

determined by the security level (in [2] 587,74 74  lK  ), and choose an appropriate field modu-

lus 3,12
1

  
mlp

K

i i

m
and a starting elliptic curve 0E  . 

2. Calculation of public keys. Alice uses her private key ),..,,( 21 KA eee  to build an iso-

genic mapping ],..,,[ 21

21
Ke

K

ee

A lll  (class group action [2]) and calculates the isogenic curve 

0* EE AA   as her public key. Based on the secret key B and function В , Bob performs the 

same calculations and receives his public key 0* EE BB  . These curves are defined their parame-

ters BA dd ,  up to isomorphism, which are accepted as public keys known to both parties. 
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3. Sharing secrets. Here the protocol is similar to item 2 with replacements BEE 0  for Al-

ice and AEE 0 for Bob. Knowing Bob's public key, Alice calculates 0** EEE BABABA  . 

Similar actions of Bob give a result 0** EEE ABABAB  that coincides with the first one due 

to the commutatively of the group operation. The J -invariant of the curve )( BAAB EE   is accepted 

the shared secret. 

Below we present a modification of Alice's computational algorithm according to item 2 [2] 

using isogenies of quadratic and twisted SEС. 

 

Algorithm 1: Evaluating the class-group action on quadratic and twisted SEC. 

 
Input: 1)(,  dEd AA   and a list of integers ),...,( 21 KA eee . 

Output: Bd  such that BA

e

K

ee
EElll K *],...,[ 21

21 , where 22

,

22

, 1: yxdyxE ВАBA  . 

1. While some 0ie  do 

2. Sample a random ,pFx  

3. Sеt ,1a
2222 1: yxdyxE AA   if )1/()1( 22 dxx  is a square in 

pF , 

4. else ,1a
2222 1: yxdyxE AA  ,    

5. Let }0|{  iaeiS . If  S  then start over to line 2 while ,aa   

6. Let , 


Si ilk and compute  ),(,]2/)1[( yxPPkpR  , 

7. For each Si do 

8. Compute RlkQ i ]/[  

9. If  )0,1(Q  Compute the parameter Bd  an isogeny BA EE :  with 

Qker Set BA dd  , aee ii   , 

10. Skip i in S and ilkk /  if  0ie ,             

11. Return Аd . 

 

In comparison with Algorithm 2 in [2], our Algorithm 1, adapted to twisted and quadratic SEC, 

has some modifications: 

1. Checking the square in item 3 use the equation of the quadratic Edwards curve (3). 

2. With the order of the twisted Edwards curve 18  pnNE  with the maximum order 

nNE 42/  of the point, to obtain a point of the order n , it is sufficient to double the random point 

twice. In item 6, this property lied’s to reducing one doubling in the scalar product of the point Р . 

3. Item 9 has been corrected (you cannot reset the index i  before zeroing ie in item 10). 

4. In item 9, only the parameter Bd  of the isogenic curve is calculated and the function )(R  

point R is not calculated. 

5. Updating the number ilkk /  and reset i in item10 we perform after zeroing ie . 

According to item 10, exactly || ie  isogenies we calculate for each il  until the exponent ie is set 

to zero. Depending on its sign, isogenies are calculated in the class of quadratic ( 0ie ) or twisted 

SEC )0( ie . 

The ultimate goal of the CSIDH secret sharing algorithm is to find the common curve parame-

ter ABd  of curve ABE . For each step in the chain of isogenies EE  , it is only necessary to calcu-

late the parameter ),( Qdd   based on the parameters d  and the kernel Q  of the curve E . This 

calculation involves two SM (Scalar Multiplication) of random points R  and )1( s recurrent dou-
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blings of points of kernel Q  . Thus, the construction and calculation of a sufficiently complex 

function )(R  is not necessary for the implementation of the CSIDH algorithm. Part of the calcula-

tions in the algorithm related to the calculation of the function )(R  can be saved and significantly 

speed up the algorithm. 

The construction of isogenies of odd prime degrees for quadratic Edwards curves based on 

Theorem 2 [7], and for twisted Edwards curves - Theorem 1 [8]. In the last work, for the first time, 

mapping )(Р  formulas for the curve (1) are given, depending on two parameters a and d . We 

formulate it below. 

 

Theorem 1[1]. Let },...,,),0,1{( 21 sQQQG   – subgroup of odd order 12  sl of points 

),,( iiiQ   of curve 
daE ,

(1) over field
pF .  

Define  

.,),()(
,,













  

  



GQ GQ Q

QP

Q

QP

Q

QP

Q

QP

x

y

x

y

x

x

x

x
yxP  

Then ),( yx is l -isogeny with kernel G from the curve
daE ,

 to the curve 
daE ,

  with parameters  

laa  ,     8Add l ,     
i

s

i
A  


1
 ,                                        (6) 

and the mapping function  






















  

s
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ii

iis

ii
ii

ii

xyd

xy
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xyd

yax

A

x
yx

1 2

22

21 2

22

2 )(1

)()(
,

)(1

)()(
),(








 ,                           (7) 

or 






















  

s

i

i

is

ii

i

i

xda

x

A

y

xd

ax

A

x
yx

1 22

22

21 22

22

2
,

1
),(








 .                                       (8) 

The proof of theorem in [8] is given.  

Here, functions (7) and (8) include parameters da, , which makes it possible to construct isoge-

nies of twisted Edwards curves. 

 

3. CRITICAL ANALYSIS OF INCORRECT IMPLEMENTATION CONDITIONS OF 

CSIDH ALGORITHM ON EDWARDS CURVES IN WORK [1] 

Let us turn to the results of [1]. The main concept of this article is the construction of the 

CSIDH algorithm using one class - Edwards curves dE  (3) (the authors call it "purely Edwards 

curve", according to our classification [11] - "quadratic Edwards curve") over a prime field pF . 

Since the CSIDH algorithm is based on isogenies of supersingular curves using the quadratic twist 

of these curves, the question arises: is the problem posed in [1] solvable? 

All theorems of this work use one Farashakhi-Hoseini coordinate
2

1

2

1)( ydxPw   for each 

point ),( 11 yxP  . It is clear that the quadratic character )())(( dPw    . The neutral element 

)0,1(O  of curve (3) in theorems [1] designated as d0  , although for all curves (1) it does not de-

pend on the parameter d . 

The key theorem in [1] is Theorem 4. Let us formulate it according to the original. 
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Theorem 4[1]. Let 8mod3p . Let P  be a point on an Edwards curve dE  such that the P w-

coordinate
pFPw )( , the order of P  is not a power of 2, and )(Pw  is square. If )2( Pw  is square, 

there exists P  such that ]1[  pdEP  , )()2( PwPw  , and dP
p

0
4

1



.  If )2( Pw  is not 

square, there exists P′ such that ]1[  pdEP  , )()2(/1 PwPw  and dP
p

0
4

1



. 

Formulation of the theorem. The first error in the formulation of the theorem: for 

8mod3p  there are no curves dE  (3) that satisfied all conditions of the theorem. Indeed, in this 

case the order of the curve 8mod41  pNE  is not divisible by 8. They exist only for 

8mod7p  [13, 14]. The order of such curves with the minimum even cofactor 8 

is 18  pnNE , where 8mod1p . For example, 8mod311p  it sets a condition for the 

SEC of order 12EN , which does not contain the factor 8. It is clear that it is impossible to prove 

such a theorem. 

 

On the proof of theorems [1]. In total, in Section 4 of [1], 10 lemmas and 7 theorems are 

proved. The condition 8mod3p  is specified in Lemmas 1,2,4, 5, 9, 10 and Theorems 3, 4, 5 and 

7 with references to the lemmas and to the points of the curve (3), which does not exist under this 

condition, as well as its quadratic twist - twisted SEC (4). The proof of theorems and lemmas with 

incorrect conditions in the formulation does not make sense. 

Further, the conditions of Theorem 4 define only one curve dE  (3) with the parameter d  being 

a square ( 1,1)(  dd  ). For a random point ),( 11 yxP  and a point P2 on this curve, their re-

spective w -coordinates are 

2

2

1

2

1

11

2

2

1

2

1

2

1

2

12

1

2

1
1

2

1
)2(,)( 

































ydx

yx

ydx

yx
dPwydxPw . 

It follows that for  ,011 yx  , the quadratic character )())2(())(( dPwPw   is deter-

mined exclusively by the parameter d and, by the definition of curve dE  (3), is a square. This prop-

erty is the same for both points P  and P2 , which contradicts the second assumption of the theorem. 

While the first assumption of the theorem is always true, the second assumption is always false for a 

given curve dE  (3), since it replaces 1)( d  with 1)( d  . This means a transition to another 

class of SEC: complete Edwards curve (2) or twisted Edwards curve (4). 

The transition to the class of complete SEC (2) with 1)( d we exclude, since: 

 The class (2) does not meet the first condition of Theorem 4 ( 1)( d ); 

 All pairs of quadratic twist connected by parameters 
1d  lie inside this class; 

 Sets parameters d  of SEC (2) and (3) are different (in the sense of 
)3()2(

ki dd  ); 

 The class (2) does not contain points at infinity on which the proof of the theorem based. 

Exceptional points (points at infinity) exist only in the classes of quadratic SEC (which are ex-

cluded by the second assumption of Theorem 4) and twisted SEC [4, 11]. Thus, instead of the curve 

]1[ pdE   in the statement of Theorem 4, there should be a twisted curve ]1[, pdaE   with condi-

tions 1)()(  da   . It is important that this is no longer a curve dE , but its quadratic 

twist 1)( d . Below we present our Theorem 2 with the proof of this assertion. 

On SEС dE  (3) with order 18  pnN E  ,  


K

i iln
1

 there is a unique subgroup 

GQ  of points of prime order il  as the kernel of a unique isogeny ][ il . Over a prime field pF , 
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there is a unique SEС of the same order, defined as a quadratic twist 
t

dE of the curve (3), which has 

its own subgroup tQ   of points of the order il  as isogeny kernels 1][ 

il . All points (except 

points )0,1(),0,1( 0  DO  ) the pair of curves dE  and 
t

dE are distinct, as are the corresponding 

kernels  Q  and tQ   l -isogenies. According to Theorem 2 1)(,,  aEE ada

t

d  . This is a 

twisted SEC, but not the Edwards curve, stated in the problem statement and in the title of the arti-

cle [1]. 

Exceptional points at infinity of the 2-nd and 4-th orders of the curve (1) we can written [11, 

12] 








 

















d
F

d

a
D

1
,,, 12,1 ,                                                      (9) 

where the symbol "∞" we put when dividing by 0. Over a prime field pF , all 4 points contain quad-

ratic curves dE  (3), and the first 2 points of the 2-nd order are twisted curves (1) under the condi-

tions .1)()(  da   The latter generate a non-cyclic subgroup of points of the 2-nd or-

der },),0,1(),0,1({ 2104 DDDOG  . According [11] the sums of a random 

point 411 ),( GyxP   with exceptional points of the 2-nd order give the points 

 

































 1

1

1

111

1
,±,±, y

ad
x

d

a

d

a
yx  

From here 

)(

11
)(

2

1

2

1

2,1
Pwydx

DPw  .                                                     (10) 

For a similar sum with ordinary point of the 2-nd order )0,1(0 D  we have 

)()(),()0,1(),( 01111 PwDPwyxyx                          (11) 

The sum of a random point 411 ),( GyxP   with a 2-nd order point gives an even-order point, 

which on the curve order nNE 8  is at least 8 times greater than the number of odd-order points. 

Of these, for (2/3) points, the coordinate )(Pw  is inverted according to (10), for the rest, according 

to (11), no. This is true for two classes - quadratic and twisted Edwards curves. However, this is not 

a reason to replace one curve with another [1], not forgetting that the quadratic characters )(d  of 

their parameters are inverse. It also follows from this that the second assertion of Theorem 4 is valid 

only for twisted Edwards curves, but not for curves dE  (3) with one parameter. It is no less im-

portant that the condition 1)( d of this assertion is necessary but not sufficient. A condition 

1)( a  and the connection between the parameters of the curves daE , and 
da

tE
,

should be deter-

mined (see our Theorem 2). 

Theorem 2. For the curve daE ,  (1) in the generalized Edwards form 2222 1 ydxayx   , de-

fined over a prime field, there is a unique quadratic twist curve 
t

da
E 

,
 with parame-

ters
*

,, pFccddcaa  . 

Proof. From equation (1) we have 
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.
1

2

2
2

dxa

x
y




                                                              (12) 

Let 12,1)(,1)(  cdaad  . Quadratic twist (12) be given by transforming a square into a 

quadratic non-residue  

1
1

1

1

11
21

2
1

21

2

22

2
2 




























 xd

x
d

xd

x
d

dxd

x
dy  . 

Then for the curve of quadratic twist we can write the equation 

1, 
d

t

da
EE  :     1)(,1 22122   dyxdyx  . 

The above conditions are valid for the class of complete Edwards curves with one parameter 

for 12  cda , 1,1  dda . This result [3] is known. 

Let now 1)()(  da   , 1)( c . In this case, quadratic twist (12) we can written as 

2

2

2

2
2

2

2
21 111

xda

x

сdxсa

x
y

dxa

x
yс














 . 

This implies that the quadratic twist of a curve daE ,  with parameters satisfying the condition 

1)()(  da   (a quadratic curve isomorphic to (3)) gives a curve of the class of twisted Edwards 

curves (1) after substituting ., cddсaa  1)( c . In other words, the quadratic twist of a curve 

dE is a twisted Edwards curve .1)(,1)(,,  cdEE cdc

t

d  . The inverse mapping is given by 

multiplying both parameters by :1с .1)(,1)(,,  cdEE d

t

cdc   The theorem is proved. 

Corollary 1. For quadratic Edwards curves dE ( 1)( d ) there are no quadratic twist curves 

within this class. 

Corollary 2. For complete Edwards curves dE  ( 1)( d ) there exist quadratic twist 

curves 1d
E  inside this class. 

Corollary 1 is obvious from the uniqueness of the mapping of quadratic twist as a bijection.  It 

eliminates the curves ]1[ dE in [1]. 

Note that this result is well known from [4] (hence the term twisted Edwards curves), but with 

a different proof from our proof of Theorem 2. 

So, in the class of complete Edwards curves dE (2), the quadratic twist pairs 1 d
t

d EE lies 

inside this class and has multiplicatively inverse parameters
1d  . On the contrary, for the class of 

quadratic Edwards curves (3), for 4mod3p  and 1с  , quadratic twist d

t

d EE  ,1 gives a 

curve from the class of twisted Edwards curves with additively opposite parameters a  and d . 

We consider it proved that for the class of SEC ]1[ pdE  defined in Theorem 4 [1], there are 

no curves of the same class ]1[ pdE  as quadratic twist pairs, the formulation of Theorem 4 is in-

correct, and the concept of [1] is untenable. Strictly speaking, a unique transition of curve dE (3) 

with the condition 1)( d to its quadratic twist is possible only in the class of twisted SEC with 

parameters ,, cddcaa   1)( с . Any SEC of this class is isomorphic to curve (4). 

Interestingly, the implementation of the CSIDH algorithm in [1] (Section 6.2) uses the parame-

ters of [2] for cyclic curves in the Montgomery form with one point of the 2-nd order and the field 

modulus 587,1...4 747421  llllp i , 4mod3p , therefore the algorithm also works on com-

plete Edwards curves dE  (2) , isomorphic to cyclic curves in the Montgomery form. This does not 
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correspond to the task, and does not confirmed by theoretical results. In addition, such an imple-

mentation of the CSIDH, is known [5].  

 

4. MODEL OF IMPLEMENTATION OF THE CSIDH ALGORITHM ON 

QUADRATIC AND TWISTED SEC 

To illustrate the above conclusions, consider a simple model of the CSIDH algorithm on quad-

ratic and twisted SEC that form quadratic twist pairs with the same order [9]. Let such a pair of 

curves contain kernels of the 3-rd and 5-th order at the smallest value 15n , then the minimum 

prime 239p  and the order of these curves 24016  nNE . The parameter d  of the entire family 

of 118 quadratic Edwards curves can be taken as squares .119..2,mod2  rprd . Of these, 30 

pairs of quadratic and twisted SKE were found with parameters 1a and .1)( ad The quadrat-

ic SEC (3) is denoted by dE , and the twisted SKE (4) is denoted as
dE  ,1

. Table 1 shows the param-

eter d values for pairs of quadratic and twisted SEC. We written they as squares 

.119..5,,mod2  rprd   

 
Table 1  

Parameter d values of quadratic and twisted SEC )1( a for 239p  and 240EN  

 

In the CSIDH algorithm, an isogenic mapping ],..,,[ 21

21
Ke

K

ee

A lll  (class group action) from 

some base curve 0E  defines an isogenic curve 0* EE AA  . The sign of the degree ie  isogeny ex-

ponent specifies, in our case, a quadratic ( ie  >0) or twisted ( ie < 0) SEC. At one step of the degree 

1],[ i

e

i el i  isogeny chain, the coordinates 2/)1(..1,  lskk  of the points of the curve (3) 

kernel or the curve (4) kernel of order il are calculated, then using formula (6) il - isogenic curve 

E parameter d  . Two chains of isogenies with opposite signs of the exponents ie  give a neutral 

element of the mapping ][][
0

i

e

i

e

i lll ii 


, and then we get the original curve 0

0

0 *][ ЕlЕ i . For ex-

ample, for a pair of quadratic twist (3), (4)  at 1ie  , one can calculate a 3-isogeny curve 

)1(

110

)0(

25 EE   , then a transition to quadratic twist (4) 
)1(

110,1

)1(

110  EE  , then a 3-isogeny of 

curve (4) 
)2(

25,1

)1(

110,1   EE  , and return to curve (3) 
)0(

25

)2(

25,1 EE  . This implies an im-

portant property: the sequences of parameters 
)(id  of isogenic quadratic and twisted SEC on a peri-

od have a reverse character. In other words, if such a sequence is calculated for quadratic SEC, then 

for twisted SEC it is not required to recalculate it, but it is enough to reverse it on a period (in the 

opposite order). 

Tables 2 and 3 show the results of calculation the parameters 
)(id of chains of 3- and 5-isogenic 

quadratic SEC for module 239p  . For twisted SEC, the sequences 
)(id  should be read backwards 

on the periodT . The period of 3-isogeny is 5T  , and 5-isogeny 15T .To completeness in table 

2 there are still 4 rows missing, and in table 3 - 2 rows with the parameters of table 1, however, the 

given data is sufficient for an example. 

 

 

 

 

 

25 64 121 196 50 183 5 10 87 176 

24 153 11 110 48 187 120 193 27 160 

213 44 2 201 61 3 206 192 80 62 



  ISSN 0485-8972    Radiotekhnika No. 208 (2022) 

eISSN 2786-5525  

26 

Table 2  

Parameter 
)(id  values of two chains of 3-isogenic quadratic SEC ( 1a ) for 239p  (period 5T ) 

i 0 1 2 3 4 5 
)(id  25 110 50 10 3 25 

)(id  193 62 61 2 5 193 

 
Table 3  

Parameter 
)(id  values of the chain of 5-isogenic quadratic SEC ( 1a  ) for 239p , (period 15T ) 

i 0 1 2 3 4 5 6 7 

d
(i)

  25 201 62 10 121 5 110 183 

i 8 9 10 11 12 13 14 15 

d
(i)

  61 3 187 193 50 11 2 25 

 

Let us take the secret keys of the exponents }{ iе  isogenies of Alice and Bob's ),4,3(  A  

)5,4(B  , their functions of isogenic mappings, respectively ]5,3[ 43 A , ]5,3[ 54B , Let's 

calculate their public keys BA dd , . As the starting curve of the chain of isogenies, we will take the curve 

.25

)0( EE   Alice calculates the parameters of 7 isogenic curves )(iE : three 3-isogenuc quadratic SEC and 4 

5-isogenic twisted SEC in an arbitrary order. According to tables 2 and 3, her calculations generate a chain 

of length 7 isogeny curves 

.22,125,1201,162,110,1105011025

)0( EEEEEEEEEEE    

So, Alice's public key .2Ad . Similar calculations of Bob with a secret key )5,4(B  form a 

chain of length 9 isogeny curves 

193193,1187,13,161,1183,1110,11105010325 EEEEEEEEEEEE   , 

which gives the value of its public key .193Вd  

Further, in the secret-sharing scheme, Alice, knowing Bob's public key, calculates the isogenic 

curve 187193

43 *]5,3[ EEEBА   . Bob gets the same result using the func-

tion 1872

54 *]5,3[ EEEАВ   . The shared secret is the parameter .187AВd  If we know the sum 

key of Alice and Bob ),1,1( BA  using tables 2, 3, it is easy to check this result: 

.187325 )2()1()0(  ddd  Keys of opposite sign make the work of Alice and Bob fruitless. 

In principle, the CSIDH algorithm can be perform with exponents }{ iе  of the same sign and 

doubling their values to preserve security, but such a prospect, which halves the number of curves 

in the algorithm, is hardly interesting. 

The results of the implementation of the Edwards-CSIDH model [5] in projective coordinates 

( : )W Z  state that it is faster than the Montgomery-CSIDH model in coordinates  ( : )X Z  by 20%. 

Note that this model is construct on complete Edwards curves with order )(4 oddnnNE  .  On the 

basis of Theorems 1 and 2 in [8], in [9], and in this paper, we have shown how to implement such a 

model on quadratic and twisted SEC that form pairs of quadratic twist. The advantage of these 2 

classes of curves over the complete Edwards curves is the doubling of the number of curves used in 

the CSIDH algorithm with a corresponding increase in security. In addition, the time-consuming in-

version 1 dd of the parameter is not required when going to the complete quadratic twist curve. 

It can be concluded that the work [4], Theorem 2 and the illustration of the CSIDH model in 

this work will convince the authors of [1] of the erroneousness of their concept, that it is possible to 

implement the CSIDH algorithm using a single class "purely Edwards curves". In further research, 

we will consider the problems of constant-time CSIDH [16, etc.] and sampling of points. 
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