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1. Introduction and statement of the problem 

Steganographic subsystem is the important element of modern complex information security 

systems, the purpose of which is not only to ensure the impossibility of information reading by in-

truders, but also to hide the very fact of the presence of secret information. 

The modern direction of development of cyberspace involves a significant increase in the 

amount of graphical information in traffic, which leads to an expansion of the scope of 

steganographic methods application and an increase in their significance in complex information 

security systems [1]. This circumstance has led to increased attention of modern researchers to ste-

ganography and the emergence of a significant number of new steganographic methods operating 

both in the spatial (temporal) domain and in the domain of various transformations of the original 

container: DCT [2 – 5], wavelet transforms [6 – 9], singular value decomposition of the correspond-

ing content matrix [10 – 13], Walsh-Hadamard transform [14 – 17]. 

The use of steganographic methods in modern cyberspace is associated with possible inten-

tional and unintentional attacks against an embedded message, which may include such common 

effects as: lossy compression, noise, blur, filtering, etc., which can lead to damage of additional in-

formation carried by the image considered in this paper as a container. Considering the enormous 

volumes of transmitted, stored, and processed digital information, a compression attack is the most 

common today. These circumstances necessitate the development of steganographic methods that 

would ensure not only the reliability of the perception of the resulting steganographic message, but 

also resistance to possible attacks against the embedded message. 

Modern researchers in the field of steganography agree [18, 19] that considering the computa-

tional complexity and features of machine arithmetic, the most rational is the use of the spatial do-

main of a digital image (DI) for the embedding and extraction of additional information. However, 

the task of the development of steganographic method corresponding to the necessary requirements 

for the steganographic message, in particular, ensuring its reliability of perception, insensitivity to 

disturbing influences, etc., causes significant difficulties in the spatial domain. The existing suffi-

cient conditions for ensuring the above requirements are usually considered in the transform do-

mains of the DI (frequency, singular/spectral value decomposition domain of the corresponding ma-

trix, etc.), which, under such conditions, places the spatial domain in a deliberately “losing” posi-

tion, in particular, in the development of robust against disturbing influences steganographic meth-

ods. 

Some modern papers postulate the fact that it is possible to provide resistance to attacks against 

an embedded message, in particular to lossy compression, exclusively in the DI transform domain, 

which is clearly not true [20] and is confirmed by the code-controlled information embedding 

steganographic method recently proposed by the authors in [21]. The mentioned method provides 

both reliability of perception and perturbation insensitivity of the steganographic message using the 

spatial domain for steganographic transformation more efficiently than methods that make use of 

the DI transform domains for steganographic transformation. 

As it is known, the efficiency of methods which are based on the code structures directly de-

pends on the properties of the codes used in them. The code-controlled information embedding 

steganographic method developed in [21] is based on the use of codewords based on the rows of the 

Walsh-Hadamard matrix (first-order Reed-Muller code) to control the embedding of additional in-

formation, the optimality of which has not been researched properly to this point. This circumstance 
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determines the task of developing a theoretical basis for the construction of effective codewords for 

their application in the code-controlled information embedding steganographic method. 

The purpose of this paper is a theoretical substantiation of a method for improving the proper-

ties of codewords used in the spatial domain of the container in order to reduce the sensitivity to 

disturbing influences of the steganographic message generated with their help. 

2. The code-controlled information embedding steganographic method 

One of the main transforms that is used in processing (in particular, compression) of images 

and videos is the DCT, defined by the following relation 

 T

N NS С XC , (1) 

where X  is a fragment of the original image of size N N , 
NC  is the N N  DCT matrix, the 

elements  , , , 0,1,..., 1C i j i j N   of which are calculated in accordance with the following 

formula 
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Significant attention in the development of modern steganographic methods for DI is given to 

the two-dimensional Walsh-Hadamard transform [22], which is specified using the following 

relation 

 T

N NW H XH  , (3) 

where X  is a matrix of size N N , 
1
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N

  , and the Hadamard matrix 
NH  of order N  is 

given using the Sylvester construction 
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In [21], the relationship between the two-dimensional and one-dimensional Walsh-Hadamard 

transform was established (up to a coefficient 1 N ) 

 
2NW XH , (5) 

where the operator A  denotes the representation of the matrix A  of order N N  as a row vector of 

length 2N  by sequential concatenation of the rows of the original matrix A . 

The established relationship between the two-dimensional and one-dimensional Walsh-

Hadamard transform makes it possible to simplify and make more demonstrative the mathematical 

transformations used to develop steganographic methods operating directly in the Walsh-Hadamard 

transform domain or using this domain for their functioning. 

The further development of the direction of using the spatial domain of the DI container for the 

embedding of the additional information, the prospects of which are indicated in [19], is the method 

for code control of the embedding of additional information, proposed in [21]. The main idea of this 

method is based on the application of the linearity property of the Walsh-Hadamard transform. 

Formally, the steganographic transformation of a container with matrix X , regardless of the 

domain of embedding of the additional information (spatial, frequency, singular value 
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decomposition of the matrix, etc.), can be represented as: XXM  , where M  is the matrix of 

steganographic message, X  is the matrix of container perturbation as a result of the 

steganographic transformation. In other words, steganographic transformation can be represented as 

an additive embedding of additional information in the spatial domain [18]. Due to this, without 

limiting the generality of the foregoing, we further consider that the embedding of the additional 

information is performed as a summation of the initial matrix of the container image X  and the 

matrix corresponding to bits of additional information D , i.e., the following relation takes place 

 M X D  . (6) 

In the general case, the matrix D is the result of a preliminary coding of the additional 

information bits obtained at the output of the precoder in the steganographic system. For the method 

proposed in [21], D according to a certain rule is assigned to each bit of the additional information. 

In the Walsh-Hadamard transform domain, action of (6) is equivalent to summing the 

transformants of the original container image and the preliminary encoded additional information 

 2 2 2 2( )
N N N N

MH X D H XH DH    . (7) 

In other words, by performing the preliminary coding of the additional information in the form 

of a matrix D , it is possible to perform a targeted impact on one or another transformant of the 

Walsh-Hadamard transform in order to give to the steganographic message the specified properties 

determined by the Walsh-Hadamard transformant to which the impact is directed. For example, 

when information is embedded in such a way that the transformants corresponding to low and 

medium frequencies are perturbed, it is possible to obtain steganographic messages that are resistant 

to attacks against the embedded message. The specified is the basis for the code-controlled 

information embedding method. 

The use of code-controlled information embedding in combination with codewords over the 

alphabet { 1, 1}   made it possible to obtain a steganographic method [21], which is superior in 

efficiency to known analogs that are resistant to attacks against an embedded message. However, 

the number of errors that occur when decoding additional information from a steganographic 

message subjected to a compression attack with low quality factors 40QF   is more than 5,5 %, 

which may be unacceptable in some practical applications. In this paper, we propose a further 

improvement of the method proposed in [21] by researching the characteristics of the codewords 

used in it. 

3. Codewords energy and selectivity 

The operation of the code-controlled information embedding method implies the use as a 

matrix D  of size   , which is the result of encoding of the additional information bit, with help 

of such codewords that would selectively modify those frequency components of the container 

block that are least affected by attacks against an embedded message (in the case of lossy 

compression attacks, noisy or blurring, we are talking about components corresponding to low and 

medium frequencies). 

At the same time, the perturbing effect that the attack has on the embedded message, as well as 

the embedding of the additional information itself, can be represented as an additive perturbation 

matrix, thus, for the case of the attacked steganographic message, expression (6) takes the form 

 M X D     , (8) 

where   is the matrix of the error introduced by the attack, 'M  is the matrix of the perturbed 

steganographic message. 

It is clear that if the element of the error matrix   is opposite to the element of the matrix D  

and will be equal to it or exceed it in amplitude, an error will occur on the decoder side when 

decoding the specified element of the codeword. Let's denote the probability of such an event as ep . 



 ІSSN 0485-8972 Радіотехніка. 2021. Вип. 207 30 

To reduce the negative effect from the impact of possible disturbances and increase the 

resistance of the code-controlled steganographic method, we can increase the energy of the applied 

codewords, which we define as follows 

 
2
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where ,i jt  are the elements of the applied codeword. 

To construct specific codewords in [21], using a direct correspondence between the Walsh-

Hadamard transformants and the DCT transformants, the Walsh-Hadamard transformants were 

selected corresponding to the low-frequency and mid-frequency components of the DI block 
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Based on the data (10), it was proposed to use the matrix representation of the rows of the 

Walsh-Hadamard matrix of order 2N  as codewords. For example, to effect the DCT transformant 

(1,2) in 4 4 -blocks, the matrix representation of the third row of the Walsh-Hadamard matrix of 

the order 16N   is used as a codeword, which, for clarity, we present together with its 

transformants of the Walsh-Hadamard transform (3), as well as the transformants of the DCT (1) 
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where the index , 4, (1,2)b  denotes: b is the binary nature of the codeword, 4 is the order of the ma-

trix of the codeword, (1,2) is the transformant of the DCT, on which the given codeword has the 

greatest impact. 

In view of the fact that the codeword ,4,(1,2)bT 
 consists exclusively of elements belonging to the 

set { 1} , its energy, in accordance with (9), is equal to 16E  . 

An analysis of expression (11) shows that the codeword ,4,(1,2)bT 
 has an exclusive effect on the 

transformant (1,3) of the Walsh-Hadamard transform ,4,(1,2)bW 
. However, the relationship established 

in [21] between Walsh-Hadamard transformants and DCT transformants is not one-to-one; the point 

is that a given Walsh-Hadamard transformant is related to a certain DCT transformant “mainly”. 

This circumstance leads to the fact that in the DCT transformants of the codeword there is an im-

pact not only on the desired transformant (1,2), but also on the transformant (1,4). In other words, 

while providing a selective effect on the Walsh-Hadamard transformant (1,3), the codeword ,4,(1,2)bT 
 

is not selective in terms of the effect on the DCT (1,2) transformant, while a significant part of its 

energy is spent on changing the DCT transformant (1,4), which is higher frequency, and therefore 

more susceptible to attacks against the embedded message. From the point of view of steganogra-

phy, this can be considered as the distribution of the embedded additional information (  


214 ,,,bT  or 

 ,4, 1,2b
T   is the result of preliminary coding of additional information), over the frequency compo-

nents of the DCT (1,2) and (1,4), or otherwise, as a representation of the additional information in 
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the frequency domain in the form of perturbations of the corresponding frequency coefficients. At a 

formal level, the additional information decoding will be the more efficient the less these frequency 

coefficient perturbations change as a result of an attack against an embedded message, in particular, 

a lossy compression attack. At the same time, that “part of the additional information”, the formal 

representation of which is the perturbation of the DCT coefficient (1,2), is “more protected” from 

lossy compression attack than the part, the representation of which is the perturbation of the mid-

frequency coefficient (1,4). In this regard, an urgent task for the block size 4 4  is to ensure the re-

duction (minimization) of the perturbation of the DCT coefficient (1,4) as a result of the embedding 

of an additional information to increase the efficiency of its decoding under conditions of attacks 

against an embedded message. Similar problems arise for blocks of other sizes. 

To quantify the selectivity of the impact of a codeword on the frequency components of a 

steganographic message, we propose to determine the selectivity coefficient   as follows 
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It directly follows from definition (10) that for a fixed codeword size, with an increase in the 

selectivity coefficient  , the expected “effect” from using a particular codeword will increase (in 

particular, the resistance of the steganographic transformation to attacks against the embedded mes-

sage for the corresponding codewords will increase) with increasing of m,nc  and decrease of 
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The result of “scattering” the impact of the codeword will increase with the growth of its size. 

Indeed, as μ increases, the step of changing of the argument of the cosines used in the DCT will de-

crease. This will cause the increasing in codeword energy, which affects mainly low frequencies (by 

codeword construction), to be redistributed to more close low frequencies that differ slightly from 

each other, and this difference decreases with increasing in µ. In this case, the DCT coefficient 

(n,m) corresponds to different (low) frequencies in blocks of different sizes, as follows from formu-

la (2). Let's call this the “close neighbor” effect. The “close neighbor” effect will lead to a decrease 

in the value of the selectivity coefficient   with increasing in  , determined in accordance with 

(10) (Table 1), where only the impact on a given frequency coefficient (n,m) is put at the forefront. 

The increase in total impact on low-frequency “close neighbors” of (n,m) will be strictly shown be-

low. Thus, a decrease in   with growth in   in the general case does not reflect a decrease in the 

resistance of the steganographic transformation to an attack against the embedded message, an illus-

tration of which is Fig. 1, where the resistance of a stenographic message to an attack by Gaussian 

noise increases with a decrease in   (increase in  ). Graphs (Fig. 1) were obtained using an exper-

iment to determine the resistance of the code-controlled information embedding steganographic 

method to a noise attack using 500 images in TIFF format from the NRCS database [23]. 
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a 

 
b 

 
c 

Fig.1. Dependence of the number of errors during the extraction of the additional information under the conditions  

of imposition of Gaussian noise on the steganographic message from the value of the PSNR when using codewords 

with   -matrices: a – 4  ; b – 8  ; c – 16   
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Table 1 

DCT Transformant Codeword, 

4   
  Codeword, 

8   
  Codeword, 

16   
  

(1,1) 
,4,(1,1)bT 

 1 
,8,(1,1)bT 

 1 
,16,(1,1)bT 

 1 

(1,2) 
,4,(1,2)bT 

 0.7071 
,8,(1,2)bT 

 0.5603 
,16,(1,2)bT 

 0.4675 

(2,1) 
,4,(2,1)bT 

 0.7071 
,8,(2,1)bT 

 0.5603 
,16,(2,1)bT 

 0.4675 

(3,1) 
,4,(3,1)bT 

 1 
,8,(3,1)bT 

 0.7071 
,16,(3,1)bT 

 0.5603 

(2,2) 
,4,(2,2)bT 

 0.5 
,8,(2,2)bT 

 0.314 
,16,(2,2)bT 

 0.2186 

(1,3) 
,4,(1,3)bT 

 1 
,8,(1,3)bT 

 0.7071 
,16,(1,3)bT 

 0.5603 

 

As it can be seen from Table 1, when the codeword size is 4  , the codewords ,4,(3,1)bT 
 and 

,4,(1,3)bT 
 have the value of the selectivity coefficient equal to 1   (which means the absolute selec-

tivity). Let us consider in more detail the nature of the existence of absolute selectivity for some 

codewords. Let codewords ,4,(2,1)T 
 and ,4,(3,1)T 

 to be given over a ring of real numbers that have a 

selectivity coefficient 1  . These codewords can be constructed by solving the following matrix 

equations 

 ,4,(2,1) ,4,(3,1)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

, .
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

T TC CT C T C



 

   
    
   
      

 (11) 

Solving these matrix equations using the property of the relationship between two-dimensional 

and one-dimensional DCT [21], we obtain the following codewords 

 

,4,(2,1)

,4,(3,1)

0.32665 0.32665 0.32665 0.32665
0.1353 0.1353 0.1353 0.1353

;
0.1353 0.1353 0.1353 0.1353

0.32665 0.32665 0.32665 0.32665

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25

T

T









 
 
    
     

   
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

 .
0.25

0.25 0.25 0.25 0.25

 
 
 
  

 (12) 

In the case of the codeword ,4,(3,1)T 
, taking the value E   (where the energy of the 

codeword ,4,(3,1)bT 
 is equal to 16E  ), we get exactly the codeword ,4,(3,1)bT 

, while the specified is 

not true for the codeword ,4,(2,1)T 
. In order to map the codeword ,4,(2,1)T 

 on the binary alphabet 

{ 1} , we must first take the value E  , and then round the elements of the resulting matrix to 

the nearest integer. It is clear that the operation of rounding to the nearest integer will lead to dam-

age of the original structure of the codeword and, accordingly, to the “scattering” of its energy over 

the other frequency components. 

In Table 2 we list the possible codewords for {4,8,16}   that have an exclusive effect on one 

or another DCT transformant, which are characterized by absolute selectivity. 
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Table 2 

Size 4 4  Size 8 8  Size 16 16  

,4,(1,1)bT , ,4,(1,3)bT , ,4,(3,1)bT , ,4,(3,3)bT  ,8,(1,1)bT , ,8,(1,5)bT , ,8,(5,1)bT , ,8,(5,5)bT  
,16,(1,1)bT , ,16,(1,9)bT , ,16,(9,1)bT , 

,16,(9,9)bT  

 

Among the DCT coefficients, the DC coefficient is guaranteed not to be affected by the “close 

neighbor” effect, since it is always determined by the zero frequency, its properties do not depend 

on the size of the codeword, which is confirmed by Table 1 (for  


11,,n,bT  the selectivity coefficient 

has a maximum value and does not change with change in  ). In addition, based on the results of 

research presented, for example, in [24], it can be argued that the DC coefficients are highly re-

sistant to external influences, which can even exceed the AC coefficients, i.e. are preferred for the 

organization of steganographic transformation. Taking this into account, we will show that the re-

sistance of the steganographic transformation organized using 
 , , 1,1b

T


 , will increase with increase in 

the value of μ. 

The matrix 
 , , 1,1b

T


  is symmetric, so it is possible to construct a spectral expansion for it in the 

form of outer products [25] 

                                                                 
 , , 1,1

1

T

i i ib
i

T u u







 , (13) 

where i  are real eigenvalues of 
 , , 1,1b

T


 , and iu  are orthonormal lexicographically positive eigen-

vectors, 1,i  . Since for  :   , , 1,1
rank 1

b
T



  , relation (13) can be refined 

                                                                    1 1 1, , 1,1

T

b
T u u


  , (14) 

where 1  is the only non-zero eigenvalue of 
 , , 1,1b

T


 . Based on the Frobenius theorem [26], consid-

ering the indecomposability and non-negativity of the matrix 
 , , 1,1b

T


 : 1 0  . Using the formulas for 

calculating the energy E of 
 , , 1,1b

T


  through the eigenvalues of the matrix, as well as through its  

elements 
   , , 1,1

, , , 1,
b

T i j i j


  , we have [18] 

                                                 
    

2
2 2 2

1, , 1,1
, 1 1

, ib
i j i

E T i j
 


  

 

     , (15) 

where 

 1  . (16) 

Then by direct calculations from (14) we obtain that 1

1 1 1
, ,...,

T

u
  

 
   
 

, which is the  

n-optimal vector of the space R  [18], denoted below as On , and the expression (14) itself is trans-

formed to the form 

                           
   , , 1,1

1 1 1 1 1 1
, ,..., , ,...,

T

T
O O

b
T n n


 

     


   

       
   

. (17) 

For the   -block F of the DI matrix, a normal singular value decomposition is possible, 

which in the representation of outer products has the form [25] 
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                                                                    1

T

i i i

i

F u v





 , (18) 

where i  are singular numbers F, 1 2 ... 0      , ,i iu v  are respectively left and right or-

thonormal singular vectors, iu  are lexicographically positive, 1,i  . It is shown in [18] that for 

the original DI: Onvu  11 . 

If F is a block of the matrix of the DI-container, then the stenographic transformation using the 

codeword 
 , , 1,1b

T


  in accordance with (6) will have the form 

 
       

   

1, , 1,1
1 2

1

2

.

T T T
T O O O O T O O

i i i i i ib
i i

T
O O T

i i i

i

F T u v n n n n u v n n

n n u v

 





    

  



 



      

  

 



 (19) 

Thus, formally, steganographic transformation (6) for 
 , , 1,1b

D T


  can be represented as a per-

turbation of the maximum singular value of the container block by a value equal to the size of the 

block (codeword). It is known [18] that the first singular triple F corresponds in DI mainly to the 

low-frequency component. If we look at the steganographic transformation (19) in the spatial  

domain 
 , , 1,1b

F T


 , then here the perturbation of each pixel is the same, equal to 1  and does not 

depend on the block size, but if we analyze the result of the steganographic transformation in  

accordance with the right side, then the obvious conclusion is that with growth of   increases the 

perturbation of the low-frequency component. It is known that for the fundamental possibility of 

decoding the additional information, the perturbation that the container undergoes during the 

steganographic transformation must be greater than the perturbation that the steganographic mes-

sage undergoes as a result of the attack. In this regard, it is obvious that with growth of  , the abil-

ity of a steganographic message to resist a stronger attack increases, while PSNR does not change. 

All the codewords presented in Table 1 have a unit rank, and even without being symmetric 

matrices, they can be represented in a form similar to (14), but using a singular value decomposition 

in the form of outer products 

                                                                    1 1 1, , ,

T

b k m
T u v


  , (20) 

where 1 0   is the only nonzero singular value of 
 , , ,b k m

T


 , 11 v,u  are the left and right singular 

vector respectively corresponding to 1 . Thus, any codeword, including  , , 1,1b
T



 , is determined by 

the only singular triple corresponding to the maximum singular value, i.e. are focused mainly on 

low frequencies, which formally demonstrates the achievement of the goal of their construction. 

With an increase of  , the first singular triple, taking into account the effect of a “close neighbor”, 

will correspond to an increasing number of close low frequencies (with the exception of 
 , , 1,1b

T


  

considered above), and although the selectivity (10) will decrease, the total contribution of the low-

frequency DCT coefficients will increase, considering the properties of the first singular triple. In 

this case, with increasing of  , the perturbation and the number of perturbed low-frequency coeffi-

cients will increase, considering the “close neighbor” effect (at the same time, for definiteness and 

uniformity for any  , we will consider the DCT coefficients belonging to the upper left triangle of 

the DCT matrix (Fig. 2) to be low-frequency, including the one to which the codeword is initially 

directed, as a result of steganographic transformation (6), thereby providing an increase in  

resistance to attacks against the embedded message. 
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Fig. 2. Matrix of DCT 

 , , 1,1b
T




 coefficients with a selected area of coefficients considered as low-frequency 

 

Table 3 illustrates the above, where data are presented on the values of the coefficient   which 

represents the ratio of the sum of absolute values of low-frequency DCT coefficients to the sum of 

absolute values of all other DCT coefficients for codewords used in the code-controlled information 

embedding steganographic method [21]. 

 
Table 3 

DCT Transformant 
Codeword, 

4   
  

Codeword, 

8   
  

Codeword, 

16   
  

(1,2) 
,4,(1,2)bT 

 2.4142 
,8,(1,2)bT 

 3.1165 
,16,(1,2)bT 

 3.8739 

(2,1) 
,4,(2,1)bT 

 2.4142 
,8,(2,1)bT 

 3.1165 
,16,(2,1)bT 

 3.8739 

(3,1) 
,4,(3,1)bT 

 - 
,8,(3,1)bT 

 2.4142 
,16,(3,1)bT 

 3.1165 

(2,2) 
,4,(2,2)bT 

 - 
,8,(2,2)bT 

 0.4576 
,16,(2,2)bT 

 0.9305 

(1,3) 
,4,(1,3)bT 

 - 
,8,(1,3)bT 

 2.4142 
,16,(1,3)bT 

 3.1165 

 

Analysis of the data presented in Table 3 confirms that as the size of the codewords   increas-

es, the concentration of their energy in the low-frequency components increases, which leads to an 

increase in the resistance of the code-controlled steganographic method to attacks against the em-

bedded message. 

This is fully consistent with the coding theory [27], according to which 

 1

1

1 1 (1 )
t

i t N

e decode correct corrected n e e

i

p p p C p p 



      , (21) 

where e decodep  is the probability of a decoding error, correctp  is the probability of correctly receiving 

a codeword, correctedp  is the probability of successfully correcting an error in a codeword, 
1

2

d
t


  

is the number of errors that can be guaranteed to be corrected by the code, d  is the code distance of 

the correction code used, and 
2N   is the length of the codewords of the code used. 

In view of the fact that the code-controlled steganographic method uses a code consisting of a 

pair of codewords, one of which is the inverse of the other, its code distance is d N , and, there-

fore, 
1

2

N
t


 . 

On Fig. 3 we show the graphs of the decoding error probability e decodep  dependence from the 

length of the codeword N  for various values of the error probability ep  in the codeword symbol. 
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Fig. 3. Graphs of decoding error probability e decodep  dependence from the codeword length N  

 

Analysis of the data presented in Fig. 3 shows the decrease in the decoding error probability 

with increasing of codeword length. In this case, for the values of the decoding error probability 

0.3ep   for the length of the codeword 64N  , which corresponds to the value 8  , the decod-

ing error probability actually reaches zero. 

The obtained results suggest that increasing the length of the codeword is one of the possibili-

ties for increasing the resistance of the stenographic transformation to attacks against the embedded 

message, although the possibilities here are not unlimited, since an increase in the length of the 

codeword entails a decrease in the throughput of the generated covert communication channel. 

Practical confirmation of the obtained theoretical conclusions are the results of computational 

experiments, some of which are presented in Fig. 2. 

Thus, increasing the resistance of the code-controlled steganographic method to possible  

attacks by lossy compression, noise, and blurring is directly related to three tasks: increasing the  

energy of the codeword, which can be achieved by increasing of the absolute values of its elements, 

increasing the level of selectivity of the codeword, and also increasing of the length of the used 

codewords. 

However, it is obvious here that in the case of an increase in the energy of the codeword, the 

reliability of the perception of the steganographic message worsens, in the case of an increase in the 

size of the codewords used, the throughput of the covert communication channel decreases. Increas-

ing the selectivity of the used codewords, in the general case, is the task of optimizing of their struc-

ture, which does not lead to a deterioration in the characteristics of the steganographic method. 

Conclusions 

We note the main results of the research: 

1. The definitions of the energy and the selectivity coefficient of the codeword used in the 

code-controlled steganographic method are introduced and substantiated. The values of the selectiv-

ity coefficient of codewords based on the rows of the Walsh-Hadamard matrix used in the code-

controlled steganographic method are calculated. The existence of codewords with absolute selec-

tivity is established and substantiated. 

2. It has been established that with an increase in the size of the blocks used, there is a tenden-

cy to decrease in the selectivity coefficient value due to the presence of the “close neighbor” effect, 

which, however, occurs due to the use of transformants with similar frequencies that have similar 

resistance to possible attacks on the embedded message. In this case, the ratio of the sum of abso-
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lute values of low-frequency DCT coefficients to the sum of absolute values of all other DCT coef-

ficients grows with the size of the codeword. It has been proven and practically confirmed that an 

increase in the size of a codeword leads to an increase in the resistance of a code-controlled 

steganographic transformation. 

3. Possible ways of further practical improvement of codewords used in the code-controlled 

steganographic method are established: increasing of their length, and also increasing of their selec-

tivity. In the general case, the problem of increasing the selectivity of codewords is a problem of 

optimizing of their structure, the solution of which does not lead to a deterioration in other parame-

ters of the steganographic method, which makes it a priority for further developing the direction of 

code-controlled embedding of additional information in the spatial domain of the container. 
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