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Introduction 
 

Problem statement. Creation of quantum generators (masers and lasers) is deservedly 

considered one of the greatest achievements of physics in the second half of the 20th century [1]. 

This discovery led to the emergence of a new branch of technical physics, namely, quantum 

electronics. In this area of outwardly traditional research, the issues of the theory of interaction of a 

radio-frequency field with matter and the elements of the theory of quantum amplifiers and 

generators have been sufficiently well studied. However, over the past two decades, revolutionary 

changes have taken place that have significantly transformed the scientific and technological ap-

pearance of quantum electronics. These changes are associated, first of all, with the emergence of 

many new fundamental and applied problems of coordinate-time support [2 – 4]. As a result of such 

a radical expansion of the range of problems, the issues of the influence of the error from the 

interaction on the estimation of the frequency instability of passive quantum standards of frequency 

(QSF) are still poorly understood. This is due to the laboriousness of this measuring task associated 

with the involvement of complex and expensive equipment. This equipment makes it possible to 

use the atomic time scales (TS), formed by global navigation satellite systems (GNSS) such as 

GPS\GLONASS, and atomic weighted average scales of spatially separated group standards of 

frequency and time. 

Analysis of the literature. Of the whole variety of studied atomic and molecular transitions 

caused by hyperfine interactions in atoms or the result of perturbations of the electronic structure in 

molecules, to create frequency references, atoms or molecules are mainly used, the transition 

frequencies of which lie in the range of 1...30 GHz [5 – 7]. At the same time, the following types of 

the QSF have been studied quite well: quantum generators based on beams of ammonia molecules, 

beams of hydrogen atoms and rubidium vapor with optical pumping; passive QSF on beams of 

cesium atoms and rubidium vapor with optical pumping and optical indication, etc. [5, 8].  

The functioning of these QSF is based on the methods of radio spectroscopy. For example, the 

most common cesium and rubidium QSF are based on the method of passive atomic beams, based 

on the interaction of a radio-frequency field with a beam of atoms or molecules. Because of 

interaction, transitions occur between atomic states. The most precise hydrogen QSF, as well as 

optically pumped rubidium standards, are based on the method of constructing a standard on a 

maser, where an atom or molecule is injected into a resonator tuned to the transition frequency.  

The accuracy of the passive QSF, based on the measurement of the position of the resonance 

absorption line, depends on the width of the spectral line. The narrower the line, the higher the 

accuracy. It is known, that the effect of external fluctuating fields of different physical nature 

(temperature, electromagnetic, gravitational, etc.) on the QSF leads to the appearance of additional 

frequency fluctuations in their output signal, due to these influences. A large number of specialists 

in the theory of quantum amplifiers and oscillators are engaged in compensation for these 

destabilizing factors affecting the spectral line width. 

In general, the issues of the QSF interaction when combining their group have not been 

sufficiently studied to date. The issues of electromagnetic compatibility of frequency measures in a 

group are especially poorly studied. In this case, the standard frequency separation requirement 

does not apply, since all frequency measures used have practically the same frequency of 

oscillation.  
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The main part 

Determination of spatial coordinates and velocity components is based in navigation systems 

on rangefinder and Doppler measurements. At the same time, the need for high stability of the 

systematic TS increases as the requirements for the accuracy of navigation determinations increase, 

especially when using the passive GNSS rangefinder method such as GPS\GLONASS. Therefore, 

the radio navigation field in the GNSS data, along with the main function (global autonomous 

operational navigation of ground mobile objects), allows mutual synchronization of the QSF at 

remote ground objects. The most precise comparisons of the TS using GNSS are carried out in the 

differential navigation mode. The differential navigation method is based on the relative constancy 

of a significant part of the GNSS errors in time and space [3]. 

In navigation systems, the formation of the systemic TS and its maintenance (storage) during 

the entire life of the system is carried out by atomic clocks. For modern atomic clocks, the relative 

frequency instability is 1410)51(   and below [7]. Of course, to maintain such a high stability, it 

is necessary to create a complex hardware complex. The task of this complex is to ensure the 

functioning of the core of the atomic clock, namely, an atomic (quantum) frequency standard under 

conditions of constant temperature, minimal influence of external and internal electromagnetic 

fields, exclusion of vibrations, etc.  

It is known that the equation of the atomic clock motion, based on the fundamental concepts of 

quantum mechanics, in the general case can be represented in the 


t
h

j
2

 form, where 

  is the wave function;   is the Hamiltonian; h  is Planck's constant, and 1j . The 

consequence of this equation of motion of the atomic clock (QSF) is the law  hE , where E  

the difference in energy is,   is the frequency of radiation. Thus, the postulate of the high stability 

of the atomic TS follows from the assumption of the invariability of the frequency corresponding to 

the energy difference E . 

At the same time, despite significant advances in the creation of atomic clocks (QSF), there are 

areas of their practical application, which, in principle, cannot be satisfied with the achieved level. 

These areas include metrological support for time and frequency measurements. In some cases, 

while ensuring high metrological characteristics, extremely high requirements are imposed on the 

reliability of the device.  

These difficulties are often solved in practice by building group time and frequency keepers. 

Analytical (based on calculations) and instrumental (based on appropriate signal conversion) 

combining of the QSF (generators) into one group, as stated in [9-16], makes it possible to increase 

the accuracy and stability of the keeper based on averaging the characteristics of several generators 

and reliability based on their reservation. Modern group time and frequency keepers include up to 

ten, and reference means up to several dozen QFS.  

Analytical methods of averaging the frequency of group keepers allow calculating corrections 

to the frequency of individual custodians at any time. The use of these corrections in order to 

regulate the frequencies of the keepers allows maintaining the frequency at the output of the keeper 

close to the weighted average. The weight (contribution) of each QSF from the group to the 

formation of the weighted average frequency is inversely proportional to the estimate of the 

variance of the frequency deviation of each of them from the weighted average for the entire group 

[11].  

Determination of weighting factors based on the results of intercomparisons of QSF in a group 

encounters two problems.  

First, to obtain unbiased estimates of the weighting coefficients, it is necessary to estimate and 

eliminate the average value of deviation of the frequency of each QSF from the weighted average 

value. This value, in turn, is determined from the condition that the unbiased estimates of the weight 

coefficients are known. That is, a certain contradiction arises, the resolution of which allows 

inaccuracies in the form of certain assumptions based on subjective factors.  
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Secondly, since only the frequency differences of the output signals of the used QSF can be 

determined in the process of intercomparisons, in the estimates of the variance of the results of 

paired comparisons, in addition to the estimates of the variance of the intrinsic noise of each 

measure, second mixed central moments are added. In the general case, in the presence of an error 

from mutual interaction, for a system of N  measures, there is a need to determine 2N  unknown 

estimates of the variance of the intrinsic noise of each quantum measure (QSF) and the second 

mixed central moments. When implementing a complete graph of comparisons, it is possible to 

obtain  21N  estimates of the second central moments, which can be used as the right-hand sides 

of a system of linear equations with respect to the desired quantities. According to the theorems of 

linear algebra, such a system has no unique solution. This determines the inability to determine 

reliably the weight coefficients for estimating the weighted average value of the frequency of the 

group measure (standards) based on the results of intercomparisons of measures in the group. Even 

under the assumption that there is no cross-correlation between the output signals of measures in the 

group (which contradicts experimental studies), the solution of this system of equations is 

impossible. Since in this case the rank of the system will be equal to  1N  in the presence of N  

unknowns [17]. The rest of the equations of the system in the implementation of the graph of 

comparisons with the number of nodes exceeding the number  1N  will be linear combinations of 

the first  1N  equations. Resolution of this contradiction requires some subjective assumptions.  

Thus, the problem of forming group TS and reference frequencies in the interpretation of the 

methods of mathematical physics and computational mathematics belongs to the class of ill-posed 

problems, the solution of which is possible only with the development of an appropriate 

regularizing algorithm. One of the promising directions in the search for regularizing algorithms is 

the construction of identification models based on information about the physical processes 

occurring in the system under consideration [18]. 

So in the behavior of real group quantum measures (standards), one pattern can be traced: 

along with the phase drift (stroke of the TS) caused by the deviation of the actual frequency from its 

nominal value, there are slow phase oscillations relative to its linear drift [14, 15]. These 

fluctuations can be classified as a manifestation of the Markov fluctuation process. However, the 

presence of quasi periodicity of such fluctuations suggests the presence of harmonic components 

with non-multiple frequencies in the spectrum of the output signal of each measure. Indeed, in the 

presence of electrical or electromagnetic connections between the QSF (measures) included in the 

group and located quite close to each other, as well as having electrical connections through the 

means of mutual comparisons, we can assume the formation of a system of coupled oscillators with 

close frequencies.  

In [14], the presence of regular periodic components in the spectrum of the output signal 

emitted by the GPS equipment and generated by a group of the QSF on board each satellite is 

shown. Similar results were obtained in [15, 16]. 

The approach to a group measure as a system of coupled oscillators can allow one to create a 

model with such a number of parameters that can be unambiguously determined from the results of 

intercomparisons. For example, the vector equation of state for a group of frequency measures can 

be represented as a system of differential equations with a set of parameters that are uniquely 

determined from the results of intercomparisons. This system can be uniquely solved in the class of 

periodic functions, and the result of the solution can be used to estimate the predicted state of the 

frequency and phase of the output signal of each measure based on the results of processing their 

current and previous states. If such estimates are valid, they can be used in the procedures for 

correcting the output signal of each measure or leading measure in order to compensate for the 

frequency deviation from the nominal value or the TS stroke.  

At present, there are no known hardware methods for compensating the error from interaction 

in the spectrum of the output signal, since the relative frequency difference between the QSF 
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included in the group does not exceed the value 11101  . The known methods of numerical 

processing of results of intercomparisons of the output harmonic signals phases are based on their 

correlation processing and the subsequent application of the apparatus of the discrete Fourier 

transform [19]. However, the use of such an approach in the presence of such low frequencies in the 

spectrum contains two problems. 

First, the calculation of the autocorrelation function based on the results of intercomparisons of 

the QFS included in the group, with a sampling rate equal to one second, requires more than the 

daily time spent by modern processors.  

Second, the autocorrelation function, strictly speaking, is an aperiodic function, and therefore, 

to determine its spectrum (spectral power density of the phase noise of the QSF), it is necessary to 

use the integral Fourier transform. In this case, methodically, the apparatus of the discrete Fourier 

transform is applicable only for strictly periodic functions. Application of this apparatus to 

aperiodic functions leads to methodological errors in determining the spectral density of the process 

under study. In addition, the presence of the so-called “frequency masking” effect negates the 

possibility of accurate and unambiguous determination of the frequency values present in the 

spectrum of powerful spectral components. Obtaining an estimate of the spectral power density of 

fluctuations of the phase (frequency) of the QSF output signal is the first step in the mathematical 

formulation of the problem of constructing the structure of its model. In this case, structural 

identification is carried out for a qualitative description of the investigated process of fluctuations 

with the help of various operators. 

The basis of the mathematical models describing physical processes in the QSF are most often 

differential operators. At the same time, a distinction is made between models with lumped 

parameters, described by ordinary differential equations, and models with distributed parameters, 

described by partial differential equations. For physical processes taking place in continuous QSF 

media, the transfer of information about the influencing process occurs through a continuum of 

material points. In the general case, the variables characterizing the state of the object under 

consideration (atomic beam, optical cell, etc.) are functions of both time and spatial coordinates. 

Partial differential equations should be used to describe such a physical process. However, in a 

number of cases, it is possible to introduce generalizing characteristics or functions into the model, 

which make it possible to reduce a multidimensional problem to a one-dimensional problem, that is, 

to go over to a model with lumped parameters.  

The second step of the mathematical formulation of the problem is to introduce qualitative 

information into the QSF model, i.e. to determine (estimate) unknown characteristics (model 

parameters) included in the structural model. This stage is called parametric identification. 

Structural and parametric identification of physical processes in the QSF is closely related to the 

solution of inverse problems for differential equations. When formalizing general formulations and 

identifying the main classes of inverse problems, it is assumed that the formulations of direct 

problems are known, each of which can be compared within the framework of an identifiable model 

with a certain set of inverse problems. In what follows, we will consider physical processes in the 

QSF from the point of view of “cause – effect” relationships. In accordance with the causal model, 

causal characteristics include boundary conditions and their parameters, initial conditions, 

coefficients of differential equations that determine the geometric parameters and material 

substance of the object under consideration (atomic beam, optical cell, etc.). In addition, the causal 

characteristics also includes the influence external to the object under consideration, which, as a 

rule, determines the right side of the differential equations. Then the investigative characteristics 

will describe the states of the object under study, which are usually understood as fields of physical 

quantities of one nature or another (temperature field of a quartz resonator, its resonant frequency, 

phase of the output signal of a measure, etc.).  

Causal characteristics do not depend on the investigative manifestations in the sense that the 

first ones can be specified by rather arbitrary values independently of the second ones. 

The selected types of quantities are interconnected by a unidirectional causal relationship, the 
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establishment of which is the goal of the direct problem. If, according to certain information about 

physical fields or processes obtained as a result of measurements, it is required to restore some 

causal characteristics, then an inverse problem is obtained. So the inverse problems include: the 

synthesis of the equation of the QSF state, the determination of the impulse or transient 

characteristics of the object (atomic beam, optical cell, etc.). 

Violation of the causal relationship, which takes place in the formulation of the inverse 

problem, can lead to its mathematical incorrectness [20], most often to the instability of the 

solution. Therefore, inverse problems represent a typical example of ill-posed problems [21]. 

By a mathematical model of a certain physical process occurring in the QSF, we mean a set of 

equations and relations that describe this process, including the initial and boundary conditions for 

differential equations. In cases where the structure of the QSF mathematical model is given, but 

some characteristics of the model require their quantitative determination, i.e. it is necessary to 

solve the problem of parametric identification, in most situations such a problem is solved based on 

the experimental data (identification of a mathematical model from experimental data). However, 

another form of identification is possible, e.g., according to the reference mathematical model. In 

the latter case, the role of the original is played by the process model, which is quite complete and 

quite accurate, but as a rule, complex and time-consuming in practical application, which 

necessitates the development of a simpler model. Since the causal characteristics of physical 

processes in the QSF are usually subject to evaluation, parametric identification is associated with 

the solution of inverse problems. This leads to the need to determine the correctness of the inverse 

problem formulation [22]. The Hadamard condition [23] is usually used as a correctness criterion, if 

the operator equation of the QSF state is obtained 
 

fAu  , Uu , Ff  ,     (1) 
 

where u  and f  are, respectively, the sought and observed characteristics belonging to metric 

spaces U , F , and the operator FUA : , which is assumed to be defined by a continuous linear 

or nonlinear, integral, differential or algebraic operator, has a domain of definition   UAD   and a 

range of values   FAR  .   FAR  .  

The problem of solving equation (1) is called correctly posed according to Hadamard if:  

1) for any   FARf   there is a solution Uu  (solvability condition); 

2) the solution is unique in U  (solvability condition);  

3) the solution depends continuously on f  (stability condition). 

If at least one of the listed requirements is violated, problem (1) is called ill-posed.  

The question of the existence of a solution to equation (1) consists in the study of belonging 

 ARf  . Therefore, U , F spaces should be chosen consistent with each other. For example, if a 

solution is sought in a specific class of functions, then the choice f  cannot be arbitrary, the set of 

functions on the right-hand side must ensure that the solution to equation (1) belongs to this class.  

It is known [24] that most inverse problems of mathematical physics are reduced to solving 

equations of the first kind (equations of type (1)) with completely continuous compact operators A . 

In this case, 1A  operator, inverse of a completely continuous one, is unbounded [23]. As a result 

of this, the solution of problem (1) with different, but close to each other, right-hand 

sides Ffff 
~

, : 
 

fAu 1
1

 ,  ffAu
~1

2   , 
 

can differ from each other as much as desired [25].  

Let us consider this situation in somewhat more detail for the case when Aoperator is given in 

the form of a linear integral operator generated by a specific type of differential equation in 

combination with certain initial and boundary conditions: 
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     


 xdxxKxuxAu , .     (2) 

 

Here the integral is understood in the sense of Lebesgue,   is a measurable region in the n-

dimensional space;  xxK ,  is a function measurable in its variables, defined on  . 

Operator (2) is defined for each measurable function  xu  such that the product  xu   and 

 xxK ,  is a function summable over x  on   set. Let the function  xu  be treated as an element of 

space  2L , and the kernel  xxK ,  satisfies the condition for the existence of a finite integral 
 

  


 xdxdxxK ,2 .     (3) 

 

It was shown in [25] that such A  operator is completely continuous and, therefore, has no 

bounded converse. Therefore, the values of A  operator for arbitrarily large variations in  xu  can 

differ arbitrarily little from the values of this operator on some  xu  "support" function. As a 

consequence, the inverse mapping fA 1  will not have the property of continuity.  

A  operator meeting the above requirements is a general case when considering linear 

formulations of various problems of measuring the QSFparameters. In this case, the kernel  xxK ,  

usually corresponds to one or another Green's function or the kernel of the corresponding potential 

of a simple or double layer [26]. These functions, as a rule, satisfy requirement (3), in particular, 

they are continuous (a stronger constraint than (3)). Bounded and closed areas are usually 

considered as  .  

It is important to note that the transition from problem (1) to its extreme formulation, namely, 

the search for an element u  from the condition of minimizing the residual functional:  
 

 fAuu F
Uu

,infarg 


,     (4) 

 

does not make the task correct. 

Residual  fAuF , , as the distance between elements Au  and f  in space F , continuously 

depends on f . Consequently, small changes in f  give rise to small changes in the residuals 

 fAuF , , which, in turn, can correspond to arbitrarily large deviations in the solution and, i.e. 

convergence in the functional does not imply the convergence of the approximate solutions of the 

inverse problem to the true one. Moreover, the conditionality of the variational problem (4) as a 

property characterizing the order of influence of the smallness of the error in the task f  on the 

solution u  may turn out to be worse than the conditionality of the original formulation (1).  

The correctness of the problem statement from the point of view of the stability of the solution 

depends on the choice of a pair of spaces U  and F . This choice cannot be arbitrary. In particular, 

the right-hand side of equation (1) is usually associated with the results of measurements on some 

real object and, therefore, is burdened with random errors. These errors occur at any point in the 

segment  m,0 , i.e.  f  may even be a discontinuous function, which leads to an unstable 

solution of the inverse problem. 

An important role in the solution of inverse problems of measuring the QSF parameters is 

played by the concept of conditionally correct problems. In [27], requirements are formulated that 

turn out to be natural in the formulation of problems that are ill-posed in the sense of Hadamard. 

The essence of these requirements is that an a priori assumption about the existence of a solution 

and its belonging to a given compact set is added to the conditions of the problem statement. To 

establish the conditional correctness, it is necessary to prove the uniqueness theorem.  

A wide range of studies on conditionally correct problems was carried out in [28 – 30]. Various 

aspects of the theory of conditionally well-posed problems of mathematical physics are considered 
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in [31, 32]. Tikhonov A.N. in [28] introduced the notion of regularization. Its essence is that instead 

of an unbounded operator giving an exact formula for solving an ill-posed problem, a sequence 

(regularizing family) of continuous operators is considered such that on each element belonging to 

the domain of existence of a solution, the corresponding sequence converges to a solution.  

One of the interesting approaches to the formulation of problems that are incorrect in the 

Hadamard sense is the use of concepts and methods of the theory of probability. M.M. Lavrent'ev 

and V.G. Vasil'ev developed these concepts and methods in the most complete form [32]. In works 

in this direction, the concept of stability is established, algorithms for solving various classes of 

problems that are optimal in a certain sense are constructed under certain assumptions about the 

probabilistic properties of errors in the input data and about the probabilistic properties of the set of 

sought solutions. In [33], a numerical method was formulated for solving inverse evolutionary 

equations based on the so-called quasi-inversion. A regularizing operator with a small parameter is 

added to the evolution equation, which is the product of the original operator and its conjugate one. 

The small parameter is selected based on the specially developed optimal estimates in the solution. 

The quasi-inversion method is very simple to implement for solving evolutionary problems of 

mathematical physics.  

The paper [34] presents a method for solving conditionally correct problems of evolutionary 

type based on the application of the method of minimum residuals for the entire space-time domain 

of the solution definition. Regularization in this method is performed by choosing the optimal 

number of steps of the iterative process based on an a priori estimate of the errors in the input data. 

The trend in the development of methods for solving conditionally correct problems indicates that 

the methods used are closely related to methods for optimizing the computational process.  

Statement of the problem of assessing the instability of passive quantum standards  

       of frequency in the presence of an error from the interaction  

The measurement of the metrological characteristics of the QSF (quantum measure) is carried 

out by comparing it with a standard or an equally accurate quantum measure using a frequency 

(phase) comparator. Due to the proximity of the reference frequencies of quantum generators, the 

comparator cannot provide complete electrical (electromagnetic) isolation of the input signals. As a 

result, it can be argued about the formation of an electrical (electromagnetic) relationship between 

the quantum generators involved in the comparison process. 

From the sections of the theory of oscillations, it is known that systems of quantum generators 

having common electrical connections are described by a system of second-order differential 

equations in the form: 
 

  





N

ik
k

kikiiiiii UUUUU
1

2
0

 ,                                               (5) 

 

where in   ttAU iiii  0cos  is electric voltage fluctuations on the output of the QSF with 

slowly varying amplitudes iA  and phases  ti ;  ii U  is decrement of the i -th quantum genera-

tor, a nonlinear function that depends on the signal level of the generator; i0  is the natural 

resonant frequency of the i -th quantum generator; 
N

i
iN 00

1
 is the nominal value of the 

frequency of generation of the QFS; ik  is the coupling coefficient between the i -th and the k -th 

generators in the group. 

System (5) can be reduced using the method of slowly varying amplitudes to a system of 

truncated first-order differential equations with respect to slowly varying amplitudes and phases of 

quantum generators included in the system. Under the assumption of the additivity of the noise 
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vector i , the state vector of system (5) can be written in the form of the differential Langevin 

equation [17]  
 

 
       tttGttF

dt

td


 


,, ,   00 


t ,   (6) 

 

where    it 


 is the N -dimensional vector of the current values of the frequency of each 

quantum measure;    it 


 is N -dimensional vector of shaping noise (white noise);   ttF ,


 

and   ttG ,


are deterministic continuously differentiable functions of their arguments that satisfy 

the Lipschitz condition [35]:      yMxfyxf b,, , bM  is some positive constant. 

If the functions   ttF ,


 and   ttG ,


 are known, then it can be argued that the current 

state of the system of coupled oscillators as a whole has been determined. Indeed, stochastic 

integration in the sense of Ito [17] of the right and left sides of Eq. (6) (in the extreme case, by 

numerical methods) leads to an explicit expression of the current state of the system of coupled 

oscillators  t


.  

Thus, to solve the problem of determining the metrological characteristics of quantum 

measures by group comparisons, it is necessary to find in one way or another the expression of the 

functions   ttF ,


 and   ttG ,


. 

Let us represent the process of measuring phase noise in the form of a mathematical 

expression, i.e., the observation equation [17] 
 

      ttthtZ 


, ,                                                       (7) 
 

where  tZ


 is the vector of current values of the measurement results, the dimension of which 

corresponds to the number of meters included in the system;  *h  the vector-function 

mathematically expresses the relationship between vectors  t


 and measurement results;  t


 is 

the noise vector of the meters (comparators).  

Since the frequencies of all quantum generators of the system under consideration are very 

close ( 10
00 10 i ), the indicated spectral lines will be in the near zone of the natural 

frequency of each measure. This will naturally lead to a sharp increase in the power spectral density 

of the phase noise near the carrier. These spectral lines do not have a frequency multiplicity; 

therefore, the external manifestations of this phenomenon will be equivalent to the behavior in time 

of noises such as random wanderings. 

Since only the phase difference of the oscillations kiik   generated by the i -th and  

k -th measures (QSF) is subject to direct measurement with the help of comparators, in the general 

case i  is not observational. Accordingly, the expression for the single-sideband (SSB) power 

spectral density of the phase noise, the phase difference ik  in the beat mode will have the form: 
 

        


 
ik

ik

ik
SAUS

K

k
kko

1

22

2

1
, (8) 

 

where    is the symbolic impulse function of Dirac;  ik
S  is the power spectral density of the 

difference in the intrinsic phase noise of the i -th and the k -th measure; ikK  is the number of 

significant fluctuations in the phase difference between the i -th and k -th measures, due to beating 
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with the signals of other quantum measures in the group and among themselves; k  is the 

frequency of the k -th bright spectral line in the spectrum of the phase of the output signal of the  

i -th measure.  

Indirect measurement methods of  ik
S  are based on measuring a set of estimates of the 

variance of  ND
 
fluctuations of the phase difference of the output signal of a measure, obtained 

at different time measurements   and subsequent inversion of the Fredholm integral equation of the 

first kind  
 

     


 

0

,2 NN DdKS
ik

,                                                   (9) 

 

where  ,NK  is the kernel of the integral equation, the form of which is determined by the 

method of obtaining the estimate  ND  [18].  

The inversion of equation (9) by numerical methods is associated with the discretization of this 

equation and its transformation to a system of algebraic equations of the form: 
 




 
M

j
ijNjiN KSD

ik
1

),()()( , with ni ,...2,1 . 

 

In the matrix form, this expression takes the form: 
 

 


ik
SADN ,                                                          (10) 

 

where     NNN
T
N DDD  ,,1 


 is the vector of estimates of the variance of the noise of the 

quantum measure, obtained at the corresponding measurement times of the current frequency value 

i ; A  is a well-known matrix with dimensions Mn , each element of which is multiplied by the 

quantization step of the original integral equation in the analysis frequency range, and, accordingly, 

is equal to f ;     M
T SfSS   ,,1 


 is the vector of the sought-for values of the spectral 

power density of the phase noise at the frequencies if .  

Matrix A  elements represent the numerical values of the square of the modulus of the 

corresponding frequency response obtained for certain values of the parameters iff   and i . 

The variance of the comparator (meter) noise 
2
с , similar to the variance of the quantization noise 

2
q , remains constant for all measurement intervals i . Hence, the following expression for the 

measurement matrix    22
qс  is valid, where   is the identity matrix. 

The accuracy and stability of solutions is determined by the conditionality of the matrix 

 AAT 1  [18]. A quantitative estimate of the conditionality of an arbitrary square matrix is the 

condition number minmax q , where max  and min  are the maximum and minimum 

eigenvalues of the matrix under study. For, vq 10  where 1v , and not absolutely precisely 

defined matrix  AAT 1 , solution (10) is unstable and has a large error.  

Obtaining a stable solution to equation (10) is possible by regularizing it. The essence of the 

regularization method as applied to the problem under consideration is the transformation of the 

Fredholm integral equation of the first kind to the Fredholm equation of the second kind [18]. The 

statistically regularized estimate is in a sense adequate to the Bayesian procedure and comes down 

to the following. 
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Let the a priori (for example, the solution in the form (10)) distribution of the vector S


 

components be known and the first two moments of the random variable   SmSE


  and 

   S
T

SS PmSmSE 





  


 are known. With Gaussian measurement noise  , the optimal 

Bayesian estimate 
S


 corresponds to the minimum of the quadratic form 

       ,)( 11
SS

T
SN

T
N mSPmSSADSADSL


 





  from which, using standard 

operations, one can obtain a solution to equation (10) in the form:  
 

   SSN
T

S
T mPDAPAAS


1111 

  .                                    (11) 
 

Thus, the solution of equation (11) makes it possible to evaluate the parameters of the model of 

interaction of the passive QSF in the process of their comparisons or application in a group 

standard.  
 

Conclusions 
 

Based on the results of the analysis of the influence of various external destabilizing factors 

(ambient temperature, the impact of other QSF) on the characteristics of the output signals of the 

QSF and methods for their compensation, the following main tasks of further research can be 

formulated:  

1. To develop a method for identifying stochastic processes caused by the error from the 

interaction of the QSF in a group on the basis of a stochastic model of coupled oscillators, and to 

develop a method for measuring quantum noise by methods of group standardization.  

2. To conduct a study of the behavior of the resonant frequency of a quantum discriminator in a 

nonstationary fluctuating temperature field of a thermostat and develop a method for compensating 

for fluctuations in the frequency of a signal generated by a passive QSF caused by fluctuations in 

the temperature of a thermostat. 

3. To develop a method for identifying hidden quasiperiodic processes in the QSF signal using 

the Fredholm integral equation of the first kind, which connects the noise variance and the power 

spectral density of phase fluctuations of the output signal containing quasi-harmonic components 

with non-multiple frequencies. 

4. To develop a method for compensating for regular quasiperiodic frequency deviations 

formed by a group standard based on an identification model of a system of coupled oscillators.  

Fundamental experiments in the field of quantum noise in quantum parallel-type random 

number generators are impossible without precision measurement of time. Therefore, as a 

promising direction for further research, it is proposed to use the method of identifying a group of 

quantum standards by a model of a system of coupled oscillators for measuring quantum noise in 

quantum parallel-type random number generators. 
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