К.А. ЩЕРБИНА, канд. техн. наук, Е.П. МСАЛЛАМ, канд. техн. наук, М.А. ВОНСОВИЧ, канд. техн. наук, К.Н. НЕЖАЛЬСКАЯ, канд. техн. наук, О.С. ИНКАРБАЕВА

ЦИФРОВОЙ МЕТОД И АЛГОРИТМ ОПРЕДЕЛЕНИЯ КООРДИНАТ «УСЛОВНОГО» ГЕОМЕТРИЧЕСКОГО ЦЕНТРА ПРОТЯЖЕННОГО ОБЪЕКТА ПО ЕГО БИНАРНОМУ РАДИОЛОКАЦИОННОМУ ИЗОБРАЖЕНИЮ

Введение

Предложенный и исследованный метод определения координатной привязки протяженного объекта по данным его бинарного радиолокационного изображения, именуемый в дальнейшем методом «бортовой линии», претендует на более простой цифровой вариант практической реализации по сравнению с другими методами. При этом не ухудшается эффективность координатной привязки, т.е. принадлежности азимутально-дальномерной координаты к физическому объекту (в нашем случае к крупнотоннажному морскому судну с известными геометрическими размерами).

Существующие радиофизические представления о формировании рассеянного поля в диапазоне сантиметровых и дециметровых волн протяженными объектами сложной геометрической формы [1 – 6] состоят в том, что радиолокационное рассеяние имеет локальный характер.

Анализ экспериментальных данных позволяет с высокой степенью достоверности сделать вывод о том, что основной вклад в формирование исходной радиолокационной информации вносят элементы конструкции морского судна, наиболее близко расположенные к радиолокатору. Наиболее часто такими элементами являются конструктивные фрагменты бортовой, носовой и кормовой частей [7 – 11].

Изложение основного материала

Метод «бортовой линии». Определение точки координатной привязки произвольного бинарного радиолокационного изображения протяженного объекта, наблюдаемого на выходе аналого-цифрового преобразователя (АЦП) с компенсированной регулярной составляющей пассивной помехи по дальности и азимуту, показано на рис. 1.

0	•										
φ	0	0	1	1	1	1	1	1	0	0	0
×	0	0	1	1	1	0	1	1	1	0	0
	0	0	1	1	1	1	0	0	1	0	0
	0	0	1	1	0	1	1	1	0	0	0
	0	0	1	1	0	0	1	1	1	0	0
	0	0	0	1	1	1	0	0	1	1	0
	0	0	0	0	0	0	0	0	0	0	0
	$\langle \Delta D \rangle$		ŀ	$R_1 R$	$R_2 R$	2 ₃ <i>K</i>	$R_4 R$	5 K	R_6 I	R ₇ •	R

Рис. 1. Произвольное бинарное радиолокационное изображение

Здесь θ – азимутальная координата; R – дальномерная координата; $\Delta \varphi_i$, ΔD_i – дискреты квантования радиолокационного изображения по дальности и азимуту.

Оценка координат привязки φ_{Γ} , R_{Γ} осуществляется следующим образом. Известными считаются габаритные геометрические размеры крупнотоннажного судна и параметры траектории его движения.

Находим точку с координатами $\varphi_{i\min}$, $R_{i\min}$ путем простого перебора всех φ_i , R_i , полученных на этапе обнаружения.

Для построения линии борта необходимо определить последовательно координаты смежных по отношению к $\varphi_{i \min}$, $R_{i \min}$ точек в соответствии с соотношениями

$$\begin{array}{c}
\varphi_{i+1} = \varphi_{i\min} + \Delta\varphi; R_{i+1} = R_{i\min} + \Delta R \\
\varphi_{i+2} = \varphi_{i+1} + \Delta\varphi; R_{i+2} = R_{i+1} + \Delta R \\
\vdots \\
\varphi_{k} = \varphi_{k-1} + \Delta\varphi; R_{k} = R_{k-1} + \Delta R,
\end{array}$$
(1)

где k – количество «1», принадлежащих линии борта.

При выбранной точке $\varphi_{i\min}$, $R_{i\min}$ длина борта L' связана с координатами точек борта простым соотношением

$$L' = \sqrt{\left(\frac{R_k - R_{i\min}}{\Delta R}\right)^2 + \left(\frac{\varphi_k - \varphi_{i\min}}{\Delta \varphi}\right)^2} \cdot \Delta R \tag{2}$$

Угол наклона линии L (рис. 2) определяется в соответствии с выражением

$$\cos\theta = \frac{\frac{R_k - R_i \min}{\Delta R}}{\sqrt{\left(\frac{R_k - R_i \min}{\Delta R}\right)^2 + \left(\frac{\varphi_k - \varphi_i \min}{\Delta \varphi}\right)^2}}$$
(3)

Рис. 2. Определение угла наклона линии L

Откуда

$$\theta = \arccos \frac{\frac{R_k - R_i \min}{\Delta R}}{\sqrt{\left(\frac{R_k - R_i \min}{\Delta R}\right)^2 + \left(\frac{\varphi_k - \varphi_i \min}{\Delta \varphi}\right)^2}}.$$
(4)

Находим координаты середины линии L

$$\varphi_{L/2} = \frac{\varphi_k + \varphi_{i\min}}{2}, \tag{5}$$

$$R_{L/2} = \frac{R_k + R_{i\min}}{2} \,. \tag{6}$$

Через точку с координатами $\varphi_{L/2}$, $R_{L/2}$ проводим линию *F*, перпендикулярную линии

L, и откладываем от точки L/2 отрезок, равный половине ширины судна Ш/2. Тогда

$$\varphi_{\Gamma} = \varphi_{L/2} - \left(\frac{III}{2}\cos\theta\right) \left(\frac{\varphi_k - \varphi_{i\min}}{R_k - R_{i\min}}\right),\tag{7}$$

$$R_{\Gamma} = R_{L/2} + \left(\frac{III}{2}\sin\theta\right). \tag{8}$$

Таким образом, задачу определения геометрического центра судна по результатам модельных радиолокационных измерений можно считать решенной. Минимальная погрешность оценки координат геометрического центра рассчитывается по формуле:

$$\sigma_r = \sqrt{\sigma_{\varphi_\Gamma}^2 R_\Gamma^2 + \sigma_{R_\Gamma}^2} \,. \tag{9}$$

Как следует из анализа реальных радиолокационных измерений (БРЛС «Наяда», «Русская коса» г. Николаев), выбор точки $\varphi_{i\min}$, $R_{i\min}$ связан с направлением движения судна относительно направления отсчета азимута вращающейся антенны РЛС.

Если судно движется в направлении вращения антенны (рис. 3, *a*), то искомая точка действительно соответствует $\varphi_{i\min}$. Что же касается $R_{i\min}$, то при R>>L точек $R_{i\min}$ будет несколько, т.е. практически по всей длине L будет выполняться $R \approx R_{i\min}$.

Рис. 3. Направления движения морского судна

ISSN 0485-8972 Радіотехніка. 2020. Вип. 201

Если судно движется в направлении, противоположном направлению движения антенны РЛС (рис. 3, δ), то искомая точка соответствует координатам R_{\min} , φ_{\max} . И в этом случае, как следует из экспериментальных данных точек, R_{\min} будет несколько.

Кроме того, истинная величина ($\varphi_k - \varphi_{i\min}$) или ($\varphi_{\max} - \varphi_k$) может отличаться от наблюдаемой в процессе радиолокационных наблюдений. При больших R>>L

$$\left(\varphi_k - \varphi_{i\min}\right)_{ucm} = \frac{L}{R} \cdot 57, 4^{\circ}.$$
⁽¹⁰⁾

Если наблюдаемая величина

$$(\varphi_k - \varphi_{i\min})((\varphi_k - \varphi_{i\min})_{ucm}), \tag{11}$$

то следует откладывать не L', а скорректированную величину L'>L', где

$$L'' = \sqrt{\left[\frac{\left(\varphi_k - \varphi_{i\min}\right)_{ucm}}{\Delta\varphi}\right]^2 + \left[\frac{R_k - R_{i\min}}{\Delta R}\right]^2} .$$
 ()

Результаты экспериментальной апробации разработанного метода и алгоритма на реальных цифровых радиолокационных изображениях

Экспериментальная апробация выполнялась по данным радиолокационной проводки двух крупногабаритных судов береговой РЛС, размещенной на «Русской косе» вблизи морского порта г. Николаева.

Обрабатывались бинарные двумерные радиолокационные изображения судов, полученные на предварительном этапе пороговой обработки цифровой частью БРЛС типа «Наяда», функционирующей в диапазоне 3 см. Мощность излучения в импульсе составляла 20 кВт, при длительности импульса $\tau_u \approx 0.1 \mu S$. Коэффициент усиления антенны составил примерно $35 - 40 \ {\rm д} {\rm E}$.

При обработке в качестве сырой первичной информации были взяты информационные цифровые кадры радиолокационных изображений, регистрируемые с временным шагом, равным 4 с.

Плоскостные геометрические параметры (длина, ширина) для 1-го судна составляли 106 на 17 м, для 2-го – 177 на 23 м.

Рассчитывались для каждого кадра дальности R_i в соответствии с формулой (8) и ази-

мут φ_i^o в соответствии с формулой (7). Кроме того, рассчитывались величины смещения продольной оси судна ΔD_i , относительно центральной линии морского канала $\Delta D_i = (R_{oi} - R_i) \times \sin \varphi_i^o$, где R_{oi} – расчетная дальность между антенной БРЛС и точкой пересечения линии визирования с центральной линией морского канала.

В табл. 1 и 2 приведены расчетные данные – дальности R_i , азимута φ_i^O и смещения ΔD_i , отобранные в результате отбраковки значений 4 м $\geq \Delta D_i \geq 25$ м, что по максимуму составляет четверть общей ширины канала, равной 100 м. Кроме того, осуществлялось прореживание «сырых» кадров цифровых радиолокационных изображений с таким расчетом, чтобы расстояние, пройденное судном между двумя регистрируемыми отсчетами $(R_{i+1} - R_i)$, составляло примерно длину судна, т.е. для первого судна это примерно 100 – 150 м, а для второго – 170 – 200 м.

Расчетные данные для первого судна						
Ν	R _i , км	$arphi^{ o}_i$, град	ΔD_i , м			
1	2	3	4			
1	7,959	105,172	13,743			
2	7,839	105,872	24,604			
3	7,599	109,12	6,57			
4	7,449	111,037	18,793			
5	7,344	112,701	16,913			
6	7,224	114,892	10,248			
7	7,119	116,907	10,872			
8	6,909	121,992	7,598			
9	6,444	124,772	24,795			
10	6,294	125,552	27,894			
11	6,129	126,330	19,164			
12	5,949	127,370	21,547			
13	5,799	128,235	18,427			
14	5,694	128,929	20,850			
15	5,529	129,967	15,349			
16	5,409	130,922	23,051			
17	5,274	131,962	24,257			
18	5,154	132,828	16,865			
19	4,929	134,471	5,334			
20	4,824	135,336	13,584			
21	4,719	136,465	8,432			
22	4,599	137,766	7,148			
23	4,374	140,193	20,645			
24	4,269	141,582	20,086			
25	3,969	146,011	27,087			
26	3,729	150,619	26,530			
27	3,624	152,090	15,245			
28	3,504	155,049	25,051			
29	3,399	158,714	23,155			
30	3,264	162,983	27,013			
31	3,159	168,665	25,430			

Таблица 1

Расчетные данные для второго судна

Таблица 2

	F 1	1 1	JF1
Ν	R _i , км	φ_i^{o} , град	ΔD_i , м
1	2	3	4
1	8,377	101,68	4,477
2	7,812	106,401	8,929
3	7,632	108,934	10,637
4	7,452	111,203	19,658
5	7,272	114,087	7,572
6	7,107	117,059	15,172
7	6,942	121,788	17,063
8	6,552	124,205	19,418
9	6,357	125,060	11,153
10	6,177	126,004	12,818
11	5,982	127,032	8,396
12	125,817	127,798	9,693
13	5,622	129,350	16,566
14	5,442	130,287	7,887
15	5,262	131,837	7,891
16	5,097	132,772	21,123
17	4,902	134,419	20,746
18	4,737	136,124	18,316
19	4,527	138,359	20,065
20	4,347	140,158	21,134
21	4,152	143,180	23,325
22	3,987	145,414	20,031
23	3,807	148,693	19,544
24	3,612	152,576	24,352
25	3,312	161,061	24,952

Далее рассчитывалось математическое ожидание величины смещения

$$\overline{\Delta D} = \frac{1}{N} \sum_{i=1}^{N} \Delta D_i , \qquad (13)$$

дисперсия и среднеквадратическое отклонение

$$\sigma^{2} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\overline{\Delta D} - \Delta D_{i} \right)^{2}, \qquad (14)$$

$$CKO = \sqrt{\sigma^2} \,. \tag{15}$$

Общее число «сырых» кадров радиолокационных изображений по первому проведенному судну составило 508, а общее число «сырых» кадров по второму судну – 462.

Средний коэффициент прореживания кадров по первому судну составил $k_1 = 508:36 \approx 14$, а по второму $k_2 = 462:28 \approx 13$, что по времени между соседними кадрами будет $T_1 = 14 \times 4 \approx 56c \approx 1$ мин, $T_2 = 13 \times 4 = 52c \approx 1$ мин.

Таким образом, в результате прореживания были получены примерно одинаковые результаты, т.е. $k_1 \approx k_2$ и $T_1 \approx T_2$.

Расчетные значения математического ожидания и среднеквадратического отклонения по данным табл. 1 и 2 составили:

$$\overline{\Delta D} = m_1 = \frac{1}{36} \sum_{i=1}^{36} \Delta D_i = 16,731 \text{ M};$$
 (16)

$$\overline{\Delta D_2} = m_2 = \frac{1}{28} \sum_{i=1}^{28} \Delta D_i = 15,19 \text{ M};$$
 (17)

$$\sigma_{\Delta D_1}^2 = \sigma_1^2 = \frac{1}{31 - 1} \sum_{i=1}^{31} (16, 31 - \Delta D_i)^2 = 49,79 \text{ m}^2; \tag{18}$$

$$CKO_{\overline{\Delta D_1}} = \sqrt{\sigma_1^2} = 7,05$$
 M

$$\sigma_{\Delta D_2}^2 = \sigma_2^2 = \frac{1}{25 - 1} \sum_{i=1}^{25} (15, 19 - \Delta D_i)^2 = 37, 23 \text{ M}^2; \tag{19}$$

$$CKO_{\overline{\Delta D_2}} = \sqrt{\sigma_2^2} = 6,1 \quad \text{M.}$$

Как видно из полученных результатов статистической обработки данных табл. 1 и 2, математическое ожидание (средняя величина отклонения условного геометрического центра) $\overline{\Delta D_1}$ и $\overline{\Delta D_2}$, и СКО отличаются примерно на 1 м.

Выводы

По результатам экспериментальной апробации разработанного метода и его алгоритмической реализации можно констатировать следующее:

- разработан цифровой метод прямой оценки координат условного геометрического центра протяженного объекта по его бинарному радиолокационному изображению в прямоугольных координатах азимут – дальность; - определяемые в соответствии с разработанным методом координаты условного геометрического центра не содержат погрешностей, связанных с наличием кливерного следа;

- полученные результаты по оценке величины смещения объекта при его движении по каналу, находятся в пределах реально ожидаемых значений $\overline{\Delta D} \approx 15$ м;

- разработанный метод и его практическая реализация достаточно просты и эффективны при выполнении информационной поддержки судоводителя в процессе проводки судна по каналу;

- необходимы дальнейшие исследования для набора статистики.

Список литературы:

1. Штагер Е.А. Рассеяние радиоволн на телах сложной формы. Москва : Радио и связь, 1986. 184 с.

2. Кобак В.О. Радиолокационные отражатели. Москва : Сов. радио, 1975. 248 с.

3. Kulemin G.P. Millimeter-wave radar targets and clufter. Boston (USA), Artech House, 2003.

4. Wilson I.D. Probability of detection aircraft targets // IEEC Trans. Aerosp. Electr. Syst. 1972. AES-8. №6. P. 757–762.

5. Vonsovich, M. A. The phase-locked loop system with combined control of the variable-frequency oscillator / M.A. Vonsovich, V. V. Pechenin, K. A. Shcherbina, E.P. Msallam // Telecommunications and Radio Engineering. 2017. Vol. 76. №15. C. 1617–633.

6. Кулемин Г.П., Горошко Е.А. Модель помехи, создаваемой обратным рассеянием от моря, в диапазоне частот 1-100 ГГц // Радиофизика и электроника. 2002. Т.6, №2-3. С. 226–234.

7. Ван-Трис Г. Теория обнаружения, оценок и модуляции ; пер. с англ. Т.3. Москва : Сов. радио, 1977. 662 с.

8. Мсаллам Е.П., Печенин В.В. Эвристический синтез цифровой модели радиолокационного сигнала, рассеянного совокупностью протяженных объектов // Радиоэлектронные и компьютерные системы. Харьков : ХАИ, 2004. №2. С. 16–21.

9. Печенин В.В., Мсаллам Е.П., Усиченко А.В. Цифровая модель радиолокационного сигнала, рассеянного подстилающей водной поверхностью под малым углом скольжения // Вестник Нац. техн. ун-та «ХПИ». Сб. научн. тр. «Системный анализ, управление и информационные технологии». Харьков, 2004. №36. С. 100–104.

10. Vonsovich M. A. Development and studying of the channel for forced tuning of the Doppler tracking filter of the FM-Signal, reflected from a substrate surface / M.A. Vonsovich, V. V. Pechenin, K. A. Shcherbina // Telecommunications and Radio Engineering. 2016. Vol. 15. №15. C. 1343–1353.

11. Baryshev, I. Statistical Doppler signal model of independent aircraft velocimeter / I. Baryshev, K. Shcherbina, E. Msallam, K. Nezhakskaya, M. Vonsovich // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 2019. №78(4). C. 363–3723.

Национальный аэрокосмический университет

имени Н.Е. Жуковского "Харьковский авиационный институт"

Поступила в редколлегию 12.03.2020