Н.П. СТОГНИЙ, канд. физ.-мат. наук, Н.С. БУТЕНКО

ПЛАЗМОННЫЕ РЕЗОНАНСЫ УЕДИНЕННОЙ МЕТАЛЛИЧЕСКОЙ НИТИ И ТРУБКИ

Введение

В последнее время металлические наноструктуры вызывают значительный интерес, что обусловлено, прежде всего, их электродинамическими свойствами и возможностью сильной локализации света на субволновом уровне за счет возбуждения поверхностных и локализованных плазмонов. Поверхностные плазмоны существуют только вдоль границы металла с диэлектриком с выполнением условия, которое требует, чтобы диэлектрическая проницаемость одной из сред ε_1 была отрицательной, а ее модуль превышал значение диэлектрической проницаемости другой среды ε_2 [1]: $\varepsilon_1(\omega) + \varepsilon_2(\omega) < 0$, $\varepsilon_1(\omega) \cdot \varepsilon_2(\omega) < 0$.

Спектр поверхностных резонансов наночастиц и соотношения между их эффективностями поглощения и рассеяния зависит от выбора металла, а также от размера, формы и структуры частиц [2]. В приложениях, до недавнего времени, использовались коллоидные смеси химических веществ с золотыми наночастицами сферической формы [3]. Но интенсивное развитие технологий синтеза наночастиц за последние несколько лет [4] предоставило для исследования широкий спектр всевозможных форм наночастиц и наноструктур, таких как наностержни [5], нанопровода [6], нанооболочки [7], нанорис [8], нанозвезды [9], наноожерелья [10], наноклетки [11].

Элементарное описание поверхностного резонанса малой металлической сферы приведено в [12, 13] и состоит в следующем: электрическое поле электромагнитной световой волны смещает свободные электроны и создает нескомпенсированные заряды вблизи поверхности частицы. Возникает связанный с этими колебаниями поверхностный локальный резонанс. Электрическое поле внутри частицы изменяется так, что с повышением порядка моды оно все сильнее локализируется вблизи границы раздела сред [13]. Собственная частота таких колебаний зависит от многих факторов (концентрации, эффективной массы электронов проводимости, формы, структуры и размера частиц, их взаимодействия, окружающей среды и т. д.). Малый размер наночастиц по отношению к длине волны видимого света позволяет во многих случаях ограничиться дипольным приближением, разработанным в работах для коллоидных сферических частиц золота [14]. С увеличением размера наночастиц в их спектрах сечения рассеяния наблюдается квадрупольный резонанс. Более того, в некоторых случаях мультипольное описание необходимо даже тогда, когда размеры наноструктуры малы по сравнению с длиной волны света.

Оптические свойства наностержней детально исследованы в [2]. В отличие от сферических частиц, в наностержнях появляется два резонанса, соответствующих колебаниям электронов поперек и вдоль оси симметрии поля. Наностержни, продольный размер которых в сотни раз превышает поперечный, называют нанонитями (нанопроводами). Исследованию нанонитей посвящена работа [15].

В данной работе исследуются поверхностные и объемные плазмоны металлической нити. Ее моделью служит круговой цилиндр бесконечной протяженности, среда внутри которого описывается моделью Друде. Исходными уравнениями являются уравнения Максвелла, дополненные материальными уравнениями и граничными условиями.

Исследуются собственные состояния поля (плазмонные моды), существующие в отсутствии источников, и колебания, возбуждаемые сторонними полями. Рассмотрены объемные плазмоны в зоне прозрачности металла. Основное внимание уделяется изучению поверхностных (локализованных) плазмонов, существующих в зоне непрозрачности металла и только в одной поляризации. Исследованы их комплексные собственные частоты, добротности и распределения полей.

1. Комплексные собственные частоты плазмонов нити

1.1. Объемные плазмоны

Рассматривается двумерная задача о собственных состояниях (плазмонных модах) металлической нити. Моделью нити является бесконечный круговой цилиндр радиуса a, среда внутри которого характеризуется диэлектрической проницаемостью ε_p (1):

$$\varepsilon_p = 1 - \frac{\omega_p^2}{\omega(\omega - i\gamma)},\tag{1}$$

здесь $\omega_p = \sqrt{Ne^2/(m\varepsilon_0)}$ – плазменная частота, N – концентрация свободных носителей заряда, e и m – заряд и масса свободных носителей заряда; $\gamma = 1/\tau$ – поглощение, где τ – время затухания плазменных колебаний. Далее в работе все среды предполагаются немагнитными, т.е. $\mu = 1$.

Цилиндр погружен в бесконечный недиспергирующий диэлектрик с диэлектрической проницаемостью ε_1 (рис. 1). Рассмотрим поля как *TM*-, так и *TE*- поляризаций.

Рис. 1. Геометрия задачи

Собственные поля находятся из уравнений Гельмгольца в предположении нулевого падающего поля в виде

$$U = A \begin{cases} b_s J_s(n_p k \rho) \cos s\varphi, & \rho < a, \\ H_s^{(2)}(n_1 k \rho) \cos s\varphi, & \rho > a. \end{cases}$$
(2)

Здесь $U = E_z$ или $U = H_z$. Неизвестный коэффициент b_s находим из граничного условия $U(\rho = a - 0) = U(\rho = a + 0)$:

$$b_{s} = \frac{H_{s}^{(2)}(n_{1}ka)}{J_{s}(n_{p}ka)}.$$
(3)

Исходя из граничного условия $\beta^{E,H} \frac{\partial U}{\partial \rho} (\rho = a - 0) = \frac{\partial U}{\partial \rho} (\rho = a + 0)$, приходим к диспер-

сионному уравнению

$$J'_{s}(n_{p}ka)H^{(2)}_{s}(n_{1}ka) - \beta^{E,H}J_{s}(n_{p}ka)H'^{(2)}_{s}(n_{1}ka) = 0.$$
(4)

Все собственные частоты, удовлетворяющие данному уравнению, являются комплекснозначными $\omega = \omega' + i\omega''$, $\omega'' > 0$, а добротность (Q) таких резонансов определяется формулой

$$Q = \omega' / (2\omega'') \,. \tag{5}$$

Данное уравнение имеет бесконечное множество решений при каждом фиксированном s, как для E-, так и для H-поляризованных полей в области прозрачности металла ($\text{Re}(\omega) > \omega_p$). Соответствующие собственные состояния поля называют «объемными» плазмонами.

На рис. 2, 3 представлены распределения ближних полей *E*- и *H*-поляризованных объемных плазмонов (модули величин E_z и H_z , соответственно). Все поля соответствуют случаю одной вариации поля по угловой переменной (*s*=1) и различаются между собой разным числом вариаций поля вдоль радиуса. Моделирование проводилось для таких значений величин: $w_p = 1$, $\gamma = 10^{-3} w_p$. Для *E*-поляризованного объемного плазмона нормированная

собственная частота, которая соответствует плазмону с одной вариацией поля вдоль радиуса, ka = 1,4739+0,182i, с двумя вариациями вдоль радиуса — ka = 3,1634+0,0514i, с тремя — ka = 4,5246+0,0099i.

Рис. 2. Пространственное распределение *E* -поляризованного объемного плазмона (модуль *z* – координаты электрического поля) с одной вариацией по углу (*s* = 1) и с разными значениями числа вариаций поля вдоль радиуса: *a*, *б*, *в* – одна, две и три вариации соответственно

Для *H* - поляризованного поля при тех же значениях плазменной частоты и поглощения собственная частота объемного плазмона с одной вариацией поля вдоль радиуса ka = 1,4458+0,177i, с двумя вариациями вдоль радиуса – ka = 3,0773+0,0482i, с тремя – ka = 4,4939+0,0095i.

Рис. 3. Пространственное распределение *H* -поляризованного объемного плазмона (модуль *z* − координаты магнитного поля) с одной вариацией по углу (*s* = 1) и с разными значениями числа вариаций поля вдоль радиуса: *a*, *б*, *в* − одна, две и три вариации соответственно

1.2. Поверхностные плазмоны

В области непрозрачности металла (на частотах ниже плазменной частоты) дисперсионное уравнение (4) имеет единственное решение при каждом отличном от нуля значении *s* в случае перпендикулярной (H –) поляризации и не имеет решений в случае параллельной (E –) поляризации. Такие собственные состояния поля соответствуют поверхностным (локализованным) плазмонам.

Плазмон, соответствующий значению s = 1, называют дипольным плазмоном, s = 2 – квадрупольным, s = 3 – гектапольным и т. д. (рис. 4). На рис. 4, *а* стрелкой указано направление дипольного момента возбуждаемого плазмона. Важным свойством поверхностных плазмонов является их сильная локализация вблизи границы.

На рис. 5 изображено нормированное поперечное сечение рассеяния (ПСР) для металлической нити (ПСР нормировано радиусом нити). Сравнивая полученные результаты, можно сказать, что при уменьшении нормированного радиуса оптически тонкой нити ($w_p = 0, 4$) в ПСР наблюдается только один пик при $\gamma = 0,01 \cdot w_p$, который соответствует возбужденному дипольному плазмону (s = 1), а при меньшем поглощении $\gamma = 0,0001 \cdot w_p$ виден еще один острый пик, который соответствует квадрупольному плазмону (s = 2). Для $w_p = 0.8$ в ПСР хорошо видны дипольный и квадрупольный плазмоны для малых потерь ($\gamma = 0,0001 \cdot w_p$), с увеличением потерь ($\gamma = 0,01 \cdot w_p$) наблюдается только один дипольный плазмон. С увеличением нормированной плазменной частоты w_p до 1,2, что можно рассматривать как увеличение поперечного размера нити, максимум соответствует возбужденному квадрупольному плазмону. Высшие плазмоны для данных значений w_p в сечении рассеяния отсутствуют.

Рис. 4. Пространственное распределение магнитного поля плазмонов: a – дипольного (s = 1), δ – квадрупольного (s = 2), e – гектапольного (s = 3)

Нить со значением нормированной плазменной частоты $w_p = 0,4$ и поглощения $\gamma = 0,01 \cdot w_p$ приближенно соответствуют серебряному нанопроводу радиуса 15 нм, $w_p = 0,8$, $\gamma = 0,01 \cdot w_p$ и $w_p = 1,2$, $\gamma = 0,01 \cdot w_p$, соответственно 44,3 нм и 69,5 нм. Далее будут рассматриваться только поверхностные плазмоны и, соответственно, перпендикулярно (*H*-) поляризованные поля.

Рис. 5. Нормированное ПСР для металлической нити

2. Четные и нечетные поверхностные плазмоны металлической трубки

Во второй части работы исследуются плазмонные резонансы металлической нити радиуса *a* с аксиально симметричной полостью радиуса *b* (рис. 6). Будем называть такую нить металлической трубкой. Трубка погружена в недиспергирующий диэлектрик с проницаемостью ε_1 .

Рассмотрим сначала задачу дифракции плоской перпендикулярно поляризованной волны $U = Ae^{-in_1kx}$ на такой структуре. Исходя из уравнений Гельмгольца, в каждой из областей решение имеет вид:

$$H(\rho, \varphi) = \sum_{s=-\infty}^{\infty} A_s^{(1)} J_s(n_1 k \rho) e^{is\varphi}, \text{ если } \rho < b,$$
(6)

$$H(\rho, \varphi) = \sum_{s=-\infty}^{\infty} \left(A_s^{(2)} J_s(n_p k \rho) + \overline{A}_s^{(1)} H_s^{(2)}(n_p k \rho) \right) e^{is\varphi},$$

если $b < \rho < a,$ (7)

Рис. 6. Геометрия задачи

ł

$$H(\rho, \varphi) = \sum_{s=-\infty}^{\infty} \overline{A}_{s}^{(2)} H_{s}^{(2)}(n_{1}k\rho) e^{is\varphi}, \text{ если } a < \rho .$$
(8)

Применяя приведенные выше граничные условия на каждой границе раздела, приходим к системе алгебраических уравнений для неизвестных коэффициентов:

$$A_{s}^{(1)}J_{s}(n_{1}kb) - A_{s}^{(2)}J_{s}(n_{p}kb) - \overline{A}_{s}^{(1)}H_{s}^{(2)}(n_{p}kb) = 0,$$
(9)

$$n_{p}A_{s}^{(1)}J_{s}'(n_{1}kb) - n_{1}A_{s}^{(2)}J_{s}'(n_{p}kb) - n_{1}\overline{A}_{s}^{(1)}H_{s}^{(2)'}(n_{p}kb) = 0,$$
(10)

$$A_{s}^{(2)}J_{s}(n_{p}ka) + \overline{A}_{s}^{(1)}H_{s}^{(2)}(n_{p}ka) - \overline{A}_{s}^{(2)}H_{s}^{(2)}(n_{1}ka) = (-i)^{s}J_{s}(n_{1}ka),$$
(11)

$$n_1 A_s^{(2)} J_s'(n_p ka) + n_1 \overline{A}_s^{(1)} H_s^{(2)'}(n_p ka) - n_p \overline{A}_s^{(2)} H_s^{(2)'}(n_1 ka) = n_p (-i)^s J_s'(n_1 ka).$$
(12)

Комплексные частоты собственных состояний поля и распределения полей находим аналогично случаю металлической нити. В данном случае дисперсионное уравнение совпадает с условием равенства нулю определителя системы (9) – (12). Следует отметить, что в отличие от сплошной металлической нити, дисперсионное уравнение для трубки при каждом фиксированном s будет иметь не одно, а два различных решения. На внутренней и внешней стороне трубки магнитное поле одного из плазмонов будет иметь один и тот же знак, назовем такой плазмон четным, а другого – разные знаки, назовем такой плазмон нечетным. Распределения полей таких плазмонов представлены на рис. 7.

Непосредственной проверкой легко убедиться, что ПСР для трубки определяется той же формулой, что и для нити

$$\int_{0}^{2\pi} \Pi_{\rho} \rho d\varphi = \frac{ik\pi\rho A^{2}}{\omega_{0}\mu_{0}} \sum_{s=-\infty}^{\infty} |\bar{A}_{s}|^{2} H_{s}^{(2)}(k\rho) H_{s}^{(2)'*}(k\rho), \qquad (13)$$

в которой необходимо поменять \overline{A}_s на $\overline{A}_s^{(2)}$.

На рис. 8 представлено ПСР (величина нормирована для нити и для трубки величиной *a*) для нити (штриховая линия) и трубки (сплошная линия). Здесь и далее использованы такие значения параметров: $w_p = 1$, $\gamma = 10^{-3} \cdot w_p$, b/a = 0,5. В ПСР нити присутствует дипольный (Re(ka) = 0,63) и квадрупольный (Re(ka) = 0,675) плазмоны. В ПСР трубки наблюдается расщепление плазмонных резонансов. Нечетные плазмоны смещаются в область более низких частот (Re(ka) = 0,48 и Re(ka) = 0,6), а четные – в область более высоких частот (Re(ka) = 0,77 и Re(ka) = 0,83). Более широкие резонансные пики соответствуют дипольным плазмонам, более узкие – квадрупольным.

s = 2 б s = 3

Рис. 7. Распределения полей в ближней зоне (b/a = 0, 5 , $w_p = 1$): a – четный плазмон, δ – нечетный плазмон

Рис. 8. Нормированное ПСР для металлической нити (штриховая линия) и трубки (сплошная линия): $w_p = 1, \ \gamma = 10^{-3} \cdot w_p, \ b/a = 0,5$

На рис. 9 представлен ПСР для трубок различной толщины. Очевидно, что расщепление резонансных частот усиливается по мере уменьшения толщины металлической трубки

(по мере увеличения отношения b/a). При этом ширина резонансных пиков также уменьшается, что говорит о росте добротности.

Рис. 9. ПСР для металлической трубки различной толщины (для различных значений соотношения b/a), $w_p = 1$, $\gamma = 10^{-3} \cdot w_p$

На рис. 10 представлены значения действительной части собственной частоты и добротности плазмонов для различных значений числа угловых вариаций поля (линии маркированы кружками для поверхностных плазмонов сплошной нити, треугольниками и прямоугольниками для соответственно нечетных и четных плазмонов трубки). Очевидно существенное увеличение добротностей плазмонных резонансов для трубки.

Рис. 10. Собственные частоты и добротности плазмонных резонансов нити (маркированы кружками) и трубки (маркированы квадратами и треугольниками для четных и нечетных плазмонов, соответственно), $w_p = 1$,

 $\gamma = 10^{-3} \cdot w_p$, b/a = 0, 5.

Выводы

Изучены плазмонные резонансы уединенной металлической нити и трубки с аксиально симметричной полостью внутри. Рассмотрены объемные (в зоне прозрачности металла) и поверхностные (в зоне непрозрачности металла) плазмоны. Изучены их комплексные соб-

ственные частоты, добротности и распределения полей. Несмотря на то, что дисперсионное уравнение имеет решение для произвольного числа угловых вариаций поля, установлено, что в ПСР для оптически тонкой нити ($w_p = 0,5$) наблюдается только один резонансный пик, соответствующий дипольному плазмону (для величины поглощения сравнимого с поглощением серебра). С увеличением радиуса нити максимум ПСР смещается в сторону мультипольных плазмонов. С уменьшением поглощения в ПСР появляются дополнительные резонансные пики.

Установлено, что дисперсионное уравнение для трубки при каждом фиксированном числе угловых вариаций поля имеет два различных решения. Существуют плазмоны, магнитное поле которых на внутренней и внешней стороне трубки имеет один и тот же знак (четные плазмоны) или разные знаки (нечетные плазмоны). Показано расщепление плазмонных резонансов: нечетные плазмоны смещаются в область более низких частот, а четные – в область более высоких по сравнению с плазмоном сплошной металлической нити. Установлено, что добротности плазмонов увеличиваются по мере уменьшения толщины металлической трубки.

Список литературы:

1. Novotny L. Principles of Nano-optics / Novotny L., Hecht B. // New York: Cambridge university press. 2006. P. 539.

2. Lee K.S. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index / Lee K.S., El-Sayed M.A // Journal of Physical Chemistry B. 2005. Vol. 109, N. 43. P. 20331 – 20338.

3. Дыкман Л.А. Наночастицы золота: получение, функционализация, использование в биохимии и иммунохимии / Дыкман Л.А., Богатырев В.А. // Успехи химии. 2007. Т. 76, № 2. С. 199 – 213.

4. Xia Y. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures / Xia Y., Halas N.J., Editors G. // MRS Bulletin. 2005. Vol. 30. P. 338 – 348.

5. Perez-Juste J. Gold nanorods: synthesis, characterization and applications / Perez-Juste J., Pastoriza-Santos I., Liz-Marzan L. M., Mulvaney P. // Coordination Chemistry Reviews. 2005. Vol. 249. P. 1870 – 1901.

6. Li Q. Experimental demonstration of plasmon propagation, coupling, and splitting in silver nanowire at 1550nm wavelength / Li Q., Wang S., Chen Y., Yan M., Tong L., Qiu M. // IEEE Journal of Selected Topics in Quantum Electronics. 2011. Vol. 17, N. 4. P. 1107 – 1111.

7. Hirsch L.R. Metal nanoshells / Hirsch L.R., Gobin A.M., Lowery A.R., Tam F., Drezek R., Halas N.J., West J.L. // Annals Biomedical Engineering. 2006. Vol. 34. P. 15 – 22.

8. Wang H. Nanorice: a hybrid nanostructure / Wang H., Brandl D. W., Le F., Nordlander P., Halas N.J. // Nano Letters. 2006. Vol. 6. P. 827 – 832.

9. Nehl C.L. Optical properties of star-shaped gold nanoparticles / Nehl C.L., Liao H., Hafner J.H // Nano Letters. 2006. Vol. 6, N. 4. P. 683 – 688.

10. Ramakrishna G. Interparticle electromagnetic coupling in assembled gold-necklace nanoparticles / Ramakrishna G., Dai Q., Zou J., Huo Q., Goodson T. // Journal of the American Chemical Society. 2007. Vol. 129. P. 1848 – 1849.

11. Chen J. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents / Chen J., Saeki F., Wiley B.J., Cang H., Gobb M.J., Li Z. Y., Au L., Zhang H., Kimmey M.B., Li X.D, Xia Y // Nano Letters. 2005. Vol. 5, N. 3. P. 473 – 477.

12. Kreibig U. Optical properties of metal clusters / Kreibig U., Vollmer M. // Springer series in materials science. 1995. Vol. 25. P. 535.

13. Mie G. Beitrage zur optik truber medien, speziell kolloidaler Metallosungen // Annals of Physics. 1908. Vol. 25. P. 377 – 445.

14. Sosa I.O. Optical properties of metal nanoparticles with arbitrary shapes / Sosa I.O., Noguez C., Barrera R.G. // Journal of Physical Chemistry B. 2003. Vol. 107. P. 6269 – 6275.

15. Kottmann J. P. Plasmon resonant coupling in metallic nanowires / Kottmann J.P., Martin O.J.F // Optics Express. 2001. Vol. 8, N. 12. P. 655 – 663.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 11.04.2020