
ISSN 0485-8972 Радиотехника. 2019. Вып. 198 5

ПЕРСПЕКТИВНЫЕ КРИПТОГРАФИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ

И ИХ ПРИМЕНЕНИЕ

ПЕРСПЕКТИВНІ КРИПТОГРАФІЧНІ ПЕРЕТВОРЕННЯ

ТА ЇХ ЗАСТОСУВАННЯ

UDC 004.056.55 DOI:10.30837/rt.2019.3.198.01

I.D. GORBENKO, Dr. Sc. (Technology), О.G.KACHKO, Cand. Sc. (Technology),

А.N. ALEKSIYCHUK, Dr. Sc. (Technology), О.О. KUZNETSOV, Dr. Sc. (Technology),

YU.І. GORBENKO, Cand. Sc. (Technology), V.V. ONOPRIENKO, Cand. Sc. (Technology),

M.V. YESINA, Cand. Sc. (Technology), S.O. Candiy

ALGORITHMS OF ASYMMETRIC ENCRYPTION AND ENCAPSULATION

OF KEYS OF POST-QUANTUM PERIOD OF 5 -7 LEVELS OF STABILITY

AND THEIR APPLICATIONS

Introduction

At present, significant efforts are being made by the cryptographic community to create

practical quantum-stable mechanisms of asymmetric encryption (ASE), key encapsulation protocols

(KEP) and electronic signature (ES) [1 – 7]. The results of the implementation of the 1st stage of

the international competition for creation of post-quantum ASE, KEP and ES [1], performed by

NIST USA, as well is performed comparisons of alternatives [2, 3], make it possible to conclude

about the prospects of application of cryptographic transformations in rings of polynomials

(algebraic lattices) for their creation. Such transformations have stood the test of cryptographic

stability in the form of the NTRU cryptosystem [1]. In general, NTRUEncrypt ANSI X9.98 [4],

NTRU Prime [5], and NTRU Prime Ukraine [5] are examples of implementations for the ASE and

KEPs of cryptographic transformations on algebraic lattices. Mechanisms for constructing the ASE

and KEPs are proposed in [2], their application makes it possible to provide the 5
th

 level of

cryptographic stability inclusive, i.e. 128 bits of quantum and 256 bits of classical crypto-stability.

But in our view, the problem of providing encryption and encapsulation is important both from

theoretical and practical point of view, including up to the 7
th

level of stability, since the 5
th

 level of

cryptographic stability is not enough for the quantum period [7 – 9]. That is, the current problem is

the problem of creation and standardization of the ASE and KEP algorithms of 256 bit quantum and

512 bit classical crypto-stability [7, 5]. Moreover, in accordance with the requirements, the draft

standard of the ASE and KEP, which is considered as the draft national standard of Ukraine

officially [8], should provide different modes of operation: asymmetric encryption; asymmetric en-

capsulation of keys; asymmetric encryption and encapsulation of keys; asymmetric encryption, en-

capsulation of keys and key generation for symmetric encryption, ensuring their crypto survivability

in the form of "direct secrecy" [11 – 13]. That is, nowadays, the problem of creating and standardiz-

ing post-quantum ASE and KEP algorithms of 128, 192 and 256 bits of quantum, as well as 256,

384 and 512 bits of classical crypto-stability [9 – 11] for valid and selected security models is

important.

The purpose of this article is to present and review the constructed algorithms of asymmetric

encryption and encapsulation of keys in polynomial rings (algebraic lattices), analysis of the

essence of the cryptographic transformations of the used ASE and KEPs. The said purpose, in our

view, is achieved by outlining the following problems:

- calculation of general and additional parameters for crypto transformations of the 5-7 levels

of cryptographic stability;

- generation of asymmetric key pairs of encryption keys and encapsulation of keys for crypto

transformations of the 5-7 levels of cryptographic stability;

 ІSSN 0485-8972 Радиотехника. 2019. Вып. 198 6

- development of algorithms of asymmetric encryption (encryption and decryption) for crypto

transformations of the 5-7 levels of cryptographic stability;

- development of algorithms of asymmetric encapsulation and decapsulation of keys for crypto-

transformation of the 5-7 levels of cryptographic stability;

- development of proposals (algorithms) for calculating secure session keys for their use in

symmetric encryption of data in communication channels;

- estimation of complexity of forward and reverse transformations at asymmetric transforma-

tions (encryption and encapsulation).

Questions of estimation of cryptographic stability and justification of the ASE and KEP

mechanism parameters are given in [6 – 9].

In the following, we will consider the mechanisms of encryption and encapsulation with three

sets of parameters that determine stability, marking them as follows: SKELYA-KEM 256/128;

SKELYA-KEM 384/192 and SKELYA-KEM 512/256 [9].

1. Parameters of cryptographic transformations of keys encryption and encapsulation

According to [7, 8, 10], the parameters of cryptographic transformations are divided into basic

(general), additional and mechanism parameters.

First and foremost, general parameters are defined to ensure the specified crypto stability as

well as to ensure the success of operations (such as the absence of decryption errors), and to reduce

computational complexity.

Only general parameters are used to calculate additional parameters. Re-calculating of

additional parameters makes it possible to reduce the computational complexity of basic

cryptographic transformation operations.

Algorithm parameters are parameters that need to be agreed to share encryption and

encapsulation algorithms. Now it concerns identifiers of algorithms, constant messages and the like.

Detailed data on generating general, additional and mechanism parameters are given in [7].

Table 1 lists general parameters of SKELYA algorithms of keys encryption and encapsulation.

The justification and calculation of the general parameters are given in [7, 9].

Table 1

General parameters of encryption and encapsulation of SKELYA algorithms keys

SKELYA-KEM 256/128 SKELYA-KEM 384/192 SKELYA-KEM 512/256

n t Q n t q n t q

881 159 7673 1201 192 9221 1471 255 12251

The following notations are used in Table 1:

n – the degree of the polynomial;

t – the number of nonzero elements in t – small polynomial;

q – a large module, a simple number that is relatively simple with a polynomial

x
n

– x – 1, and the value of q is determined by the condition of guaranteeing no decryption

error;

p – a small module, p = 3.

Table 2 lists the additional parameters of SKELYA algorithms of keys encryption and

encapsulation. The justification and calculation of the general parameters are given in [7, 10].

ISSN 0485-8972 Радиотехника. 2019. Вып. 198 7

Table 2

Additional parameters of encryption and encapsulation algorithms of SKELYA algorithms keys

Sign Purpose Formula or value

qBits The number of bits in q given as a binary

string
 2logqBits q

db Length b (bit) db= λ

bufferLenBytes The length of the octet string for the

conversion functions between the small

polynomial and the octet string (code2to3,

code3to2 functions)

Ceil (((n-1)/2)*3/8)

maxMsgLenBytes Maximum message length for encryption

(octets)

(bufferLenBytes–λ/8)–1

EncMsgLenBytes

The length of the encrypted message (octets) Ceil(qBits * n/8)

cBits The number of bits for specifying the degree

of a polynomial as a binary string
cBits = Ceil(log2n) + 1

Llen The number of octets to specify the length of

the encrypted message
1

pkLen The number of bits h that are used during

encryption

pkLen=db

Ceil function in Table 2 defines the smallest integer that is not less than the input argument.

The parameters of the encryption and encapsulation algorithms of SKELA algorithm algorithms

are shown in Table 3. The justification and calculation of the general parameters are given in [7,

10].

Table 3

The parameters of the encryption and encapsulation algorithms

of the keys and their values for the test version

Sign Purpose Formula or value

OID Method identifier (3 octets)
For the test version OID[0]=0, OID[1]=0,

OID[2]=1

m_kem

Permanent message used for encryption

in the key encapsulation and decapsula-

tion protocol

A row of octets is used for the test version

{ 'I' 0xFF, 'I' 0xFF, 'T' 0xFF, ' '

0xFF, 'E' 0xFF, 'n' 0xFF, 'c' 0xFF,

'a' 0xFF, 'p' 0xFF, 's' 0xFF, 'u'

0xFF, 'l' 0xFF, 'a' 0xFF, 't' 0xFF, 'e'

 0xFF, 0 0xFF}

m_kemBytes Length m_kem (octets)
m_kemBytes ≤ maxMsgLenBytes

m_kemBytes = 16 for m_kem

2. Generation of key pairs of asymmetric cryptographic transformations

When generating a specific key pair – private key f and public key h the polynomials G, F are

used, whose degree is n, and coefficients modulo p (p = 3), that is, they take values 0, -1,1. The

result is simultaneously calculated private key f and public key h (polynomials) and h (byte task h).

Generation is carried out in such sequence.

 ІSSN 0485-8972 Радиотехника. 2019. Вып. 198 8

Generation of Polynomial G. Polynomial G is a polynomial having (2n + 1) / 3 of nonzero

coefficients.

Generation of polynomial F. Polynomial F is a polynomial having 2t nonzero coefficients.

Calculation of the private key f is carried out according to the formula [9]

f = pF + 1 (1)

Calculation of the public key h is carried out to the formula [9]

h = p * G * f
-1

 в полі (/ [] / (1)nZ q x x x) (2)

To calculate the public key, it is necessary to calculate f
-1

 in the field (/ [] / (1)nZ q x x x) and

multiply the polynomials in the same field.

Calculation of inverse element

To calculate the inverse element, an advanced Euclidean algorithm for polynomials is used,

i.e., the equation:

ax + by = d (3)

Moreover, in equation (3) it is necessary to set a as polynomial f, b – as polynomial x
n
 –x

–1.

The value of the right-hand side of equation (3), i.e. (d), determines the greatest common divisor for

a and b (GCD). All the calculations must be performed modulo q. Computed values d, x, y can be

the result of using an advanced algorithm. If the degree of the polynomial d is 0, it is a guarantee for

the presence of inverse element since d is an integer. In our case ||f||1 ≠0, so the inverse element f
-1

mod (x
n

– x – 1) exists, and the value of the variable x is the inverse element.

The number of steps that need to be done depends only on the degree of the polynomials, so

the completion time of the inversion calculation operation is independent of the specific key

Multiplication of polynomials

The polynomial multiplication operation is defined mathematically as:

c(X) = a(X) * b(X), (4)

where

0... 1
0... 1

' (*) mod ; () '() mod(1)n

k i j

i j k
i n
j n

c a b q c X c X x x

 .

The specificity of polynomials used for multiplication is the presence of a large number of null

elements in one of the polynomials (n/3 or even more if you use this operation when encrypting). In

the implementation of this operation it is necessary to solve 2 problematic tasks:

- providing the least computational complexity;

- ensure the independence of the execution time of a particular key.

Many works are devoted to solving these problems [5 – 11].

3. Algorithms of asymmetric encryption and decryption

This section is devoted to discussion of the asymmetric encryption (encryption and decryption)

Skelya algorithms.

When developing encryption algorithms, we have taken into account the NTRU encryption

algorithm [4], which has been successfully used for almost 10 years. That is why most of the

designations coincide with the designations adopted in [5]. But the algorithm [5] has a significant

drawback associated with the possibility of decryption error, which was taken into account when

developing a new Skelya algorithm [10].

In addition, the modern practice of using as a module the prime number q instead of the

number 2
k
 and the polynomial x

n
 – x – 1 instead of the polynomial x

n
 – 1 is taken into account,

which provides protection against known attacks [5, 10]. That is why the field

(/ [] / (1)nZ q x x x)) is used as the field, as for NTRU Prime [5], but the parameters are

ISSN 0485-8972 Радиотехника. 2019. Вып. 198 9

calculated taking into account the required levels of crypto-stability λ = {256, 384, 512} and

ensuring no decryption errors [5, 10].

3.1. Encryption algorithm

Input:

 a string for encryption (m);

 the length of the string m (mLen);

 the recipient's public key h (polynomial R/q) and the corresponding octet string (h)

 Output:

 a sign of success Success (OK, ERROR);

 Encrypted string E in case of successful operation.

The length of the encryption line is limited by the fact that this line is built with additions that

will provide semantic security, it can be specified by a polynomial of degree n. If the length of the

string exceeds this value, the encryption operation returns an error. The maximum length of the

valid message (octets), depending on the level of crypto-stability (cryptographic strength) λ (degree

of polynomial n), is given in Table.4.

Table 4

The maximum length of the message, depending on crypto-stability (cryptographic strength) λ

λ 256 (n= 881) 384 (n=1201) 512 (n = 1471)

EncMsgLenBytes

(octets)
132 176 210

Algorithm for encryption is an iterative algorithm, that continues until a small polynomial is

formed, which is used to mask the encrypted message, until it satisfies the conditions:

 number (units) + number (minus) units not less than 2t

 number (zeros) is not less than t.

The masking polynomial is formed on the basis of random components, so it is highly probable

that the polynomial coefficients are equally probable. If t is significantly less than n/3 the

probability of fulfilling this condition is high and the algorithm usually does not require a return for

recalculations.

Iteration algorithm

1 An octet line of bufferLenBytes length is formed, where they write:

 random string of λ bits, denoted by b (provides semantic security);

 encryption string to which its length is transmitted;;

 zero octets (to complement the required length)

Denote this string M. This line depends on the random sreing and the incoming message and

has a constant length that does not depend on the length of the message.

2 The octet string M is converted to R/3 by a polynomial, for which every 3 bits of the string

are converted to two polynomial coefficients according to Table 5.

Table 5

Convertion of bit line into polynomial R/3 and vice versa

Bit string Polynomial coefficients Bit string Polynomial coefficients

000 0, 0 100 1, 1

001 0, 1 101 1, -1

010 0, -1 110 -1, 0

011 1, 0 111 -1, 1

 ІSSN 0485-8972 Радиотехника. 2019. Вып. 198 10

As a result of the transformation the corresponding polynomial MTrin is obtained. This

polynomial, like string M, depends on random data and the encrypted string. It should be noted that

MTrin is uniquely determined by string M, and conversely, string M can be restored by MTrin

3 An octet string is formed, where they write:

 method identifier (3 octets) that can be selected by agreement of the parties;

 message for encryption;

 random string b;

 a part of the public key h of the pkLen bits length

Let's mark this string as S. Let’s note that string S has a variable length that depends on the

length of the encryption string. String S depends not only on the string for encryption and the

random string, but also on the identifier’s algorithm and the recipient's public key.

4 Let us transform string S into a dazzling polynomial r. The dazzling polynomial is also a

polynomial of degree n having 2t nonzero coefficients, the other coefficients being 0. Let us

determine the length of the bit string required to define the dazzling polynomial. We will define

separately the signs of nonzero elements and their indices. All that should be defined is 2t

characters and 2t indices. Let us apply 2t bits to specify non-zero element characters and 2t indices

of these elements. To set each index it is enough to have cBit bits. Given the possibility of obtaining

an index that has already been used, to set the indices, we form a string twice as long as necessary.

Thus, the total length of the string, which should be formed is 2t + 4t * cBit. In general, the

transformation is carried out as follows:

 the pseudorandom data generator is initialized with string S;

 pseudo-random bytes of desired length are generated ();

 signs of non-zero elements are defined;

 indices of non-zero elements are defined;

 if not all indexes are formed, then pseudo-random bytes are generated for the remainder

of the indices and we go to the previous step.

That is, the dazzling polynomial depends on the random data, the data being encrypted, and the

portion of the public key of who the data are encrypted for.

5 The polynomial R = r * h is calculated in the field R/q

6 The polynomial R4 = R mod 4 is calculated

7 The polynomial R4 is converted to the string of oR4 octets, recording 4 coefficients into one

octet. As a result, we get a 2n-bit octet string that depends on the dazzling ng polynomial and the

recipient's public key. This line is then used to obtain the polynomial R/3.

8 We define the formation method, the required length of the string that must be used to form

the R/3 polynomial with this method. We will use a byte to form five polynomial coefficients. To

do this, we present a number in the ternary number system. The numbers 0, 1 ... 241, 242 can be set

using 5 digits, each digit corresponds to the numbers 0, 1, 2, or 0, 1, -1. These values will be used to

set the coefficients. The number of octets required in this case is Ceil (n/5). But octets with value

243 – 255 can not be used to set coefficients; the input line should be increased taking into account

the probability of such octets. A string of a double length guarantees that the required number of

coefficients is obtained.

The formation of the masking polynomial is as follows:

 perform initialization of the pseudo-random data generator with oR4 string;

 pseudo-random octets of 2 Ceil (n / 5) length are generated;

 the following 5 polynomial coefficients are calculated for each octet whose value is less

than 243;

 the resulting polynomial is denoted as a mask;

9 The polynomial m’= (MTrin + maska) mod p is calculated

10 The success of the iteration is checked:

ISSN 0485-8972 Радиотехника. 2019. Вып. 198 11

 The number of units (c1), minus units (c2) and zeros (c3) in the polynomial m ' is de-

termined;

 if c1 + c2> 2t and c3> t the iteration is successful, otherwise go to step 1

The following steps are performed, if the iteration is successful in such a sequence:

11 e = R + m’ (mod q) polynomial is calculated

12 The polynomial e is converted to the octet string E

The result of the encryption algorithm is a string of octets E

The following mathematical transformations are performed in encryption:

1 M = b||mLen||m||0..0 (a string of octets)

2 mTrin = f1 (M) (mTrin – R/3 polynomial, f1 one-to-one function, that is, M can be restored

by the value of mTrin)

3 S = oid||m||b|| part of h

4 r = f2 (S) (r – t – small polynomial, f2 – not one-to-one function)

5 R = r * h (in the field R/q)

6 oR4 = f3 (R mod 4) (oR4 – a string of octets, R cannot be restored)

7 maska = f4 (oR4) (maska – R/3 polynomial for which the conditions on the number of 1, -1, 0

are satisfied)

8 m' = mTrin + maska (mod 3)

9 e = R + m’ (mod q) (e – polynomial in the field R/q)

10 E = f5 (e) (f5 is the inverse function, so the octet string e can be restored).

3.2 Decryption algorithm

When decrypting, the octet string E is fed to the input of the algorithm, and as a result, the

output will receive an open message along with its length (in case of successful completion)

Entry:

E – string of bytes with an encrypted message;

f – recipient's private key;

recipient public key h (polynomial R / q) and corresponding octet string (h)

Output:

1 Sign of success Success (OK, ERROR).

2 Open message (in case of successful operation).

3 The length of the open message (in case of successful operation).

Algorithm

1 e polynomial is restored.

2 a = e*f in the field R/q polynomial is calculated

3 m’ = a mod 3 is restored

4 m’requirements are checked

 the number of units (c1), minus units (c2) and zeros (c3) is determined in the

polynomial m’;

 if с1 + с2 > 2t and с3 > t then Success = OK, otherwise Success = ERROR and go

(transition) to step 14.

Further steps are performed only in cases when Success = OK

5 R’ = e – m’ (mod q) is restoring

6 Polynomial R4 = R’ mod 4 is calculated

7 R4 polynomial transformation into a oR4 octet string is carried out, recording 4 coefficients

in one octet.

8 Calculation of the maska polynomial (see item 9 of the encryption algorithm)

9 mTrin = m’ – maska (mod p) polynomial is calculated and M string is restored.

10 Determining the individual fields of M row:

 first λ bits – restored random sequence (b);

 next octet – length of encrypted data (restored mLen value);

 next mLen of octets – recovered message that was encrypted (m);

 ІSSN 0485-8972 Радиотехника. 2019. Вып. 198 12

 next octets – is a restored string of addition.

11 Checking the success of the operation. The operation is considered successful if all

conditions given below are met simultaneously:

 mLen restored value does not exceed the maximum admissible EncMsgLenBytes value;

 supplement (addition) string contains zeroes, the number of which is equal bufferLenB-

ytes – db/8 – 1 – mLen

If at least one condition is not met, then Success = ERROR and go to step 14. Further steps are

performed only in cases of successful operation.

12 The recovered values b, mLen, m are used to create a string S, calculate r, and calculate R =

r * h in R/q field (steps 3-5 of the encryption algorithm).

13 Final check of the operation success: if R’ recovered in step 5 matches the value of R

obtained in step 12, the decryption operation ends successfully, the message m and its length mLen

bytes is decrypted at the output.

14 If the operation fails (Success = ERROR), an empty message of length 0 is returned.

The following mathematical transformations are performed when decrypting

1 e = f5
-1

 (E)

2 a = e*f = (r*h + m’) * f = (r * 3Gf
-1

+ m’) * f = r * 3G + m’* f in the field R/q =

3 a mod 3 = m’ (r * 3G mod 3 = 0; f mod 3 = 1)

4 R’ = e – m’ (mod q)

5 R4 = R’ mod 4

6 oR4 = f3 (R4)

7 maska = f4 (oR4)

8 mTrin = m’ – maska (mod 3)

9 M = f1
-1

 (mTrin)

10 When using M = b || mLen || m || 0..0 (string of octets) separate fields are selected, as a

result we get b, mLen, m.

4. Algorithms for encapsulation and decapsulation

For encapsulation algorithms, key data are used that are generated identically as for encryption.

In fact, encapsulation algorithms use message encryption and decryption algorithms that are defined

in advance and labeled m_kem. The length of the message m_kemBytes. Full description of the

algorithms described above see in section 3.

An arbitrary allowed hash function is used as a hash function, providing a result length of 512

bits. We denote this function by Hash512.

Function input: octet string and its length.

Output: 512-bit octet string

4.1. The encapsulation algorithm

Input:

 length of the key for the symmetric encryption K_bytes (K_bytes ≤λ/8) ;

 the recipient's public key h (polynomial R/q) and the corresponding octet string (h).

Output:

 sign of success (Success=OK, ERROR);

 encapsulated key Cc;

 key SKey for symmetric encryption, the length of which is K_bytes (K_bytes).

As with the encryption algorithm, the first step is to check whether the operation can be

performed:

 Success= OK;

 if m_kemBytes > maxMsgLenBytes then Success= ERROR;

 if K_bytes * 8 >λ then Success= ERROR

If Success= ERROR then the algorithm is not executed.

ISSN 0485-8972 Радиотехника. 2019. Вып. 198 13

Next, the variant is considered in case of successful verification (Success= OK;)

1 We first perform steps 1-12 of the encryption algorithm for m_kem message of the length of

m_kemBytes.

2 The dazzling polynomial is converted to the octet string r as follows:

 bit string bs1 is formed. The next bit of the string is 0 if the next polynomial coefficient

is 0 and 1 if the next coefficient is 1 or -1. The length of the string is bs1 = n bits.

 bit string bs2 is formed. The next bit of the string is 0, if the next non-zero element is

equal to1 and vice versa. The length of the string is bs2 = 2t bits.

 form a common bit string bs = bs1 || bs2

 denote r string of bytes, which corresponds to the bit string bs.

3 The value of the encapsulated key Cc and SKey is calculated.

c = E

The rest of the calculation depends on the value of λ.

If λ = 256, then:

H = Hash512 (r_);

C – are younger 32 octets of H;

SKey – are SKeyLen octets of senior 32 octets of H (SKeyLen ≤32);

 Cc = C|| c.

If λ = 512, then

H1 = Hash512 (r_ || 1);

H2 = Hash512 (r_ || 2);

C – H1;

SKey – SKeyLen octets of H2 (SKeyLen ≤64);

 Cc = C|| c.

4.2. Decapsulation algorithm

Input:

 length of the key for the symmetric encryption K_bytes (K_bytes ≤λ/8;

 encapsulated key Cc;

 recipient's private key f;

 recipient's public key h (R/q polynomial) and corresponding octet string (h).

Output:

 sign of success (Success=OK, ERROR);

 key SKey for symmetric encryption, the length of which is K_bytes (K_bytes).

As with the encryption algorithm, the first step is to check whether the operation can be

performed:

 Success= OK;

 if m_kemBytes > maxMsgLenBytes then Success= ERROR;

 if K_bytes * 8 >λ then Success= ERROR

If Success=ERROR then the algorithm is not executed.

Next, the variant is considered in case of successful verification (Success= OK;)

1 Decoding Cc to C and c.

2 Decoding c is performed (steps 1-13 of the decryption algorithm)

3 If the decryption error (Success = ERROR), the algorithm returns an error.

4 If the length of the encrypted message does not match the message itself, or the messageы do

not match, then Success = ERROR, the algorithm returns an error.

5 The recovered values b, mLen, m are used to create a string S and calculate r.

7 An octet string is formed for r (r) (see step 2 of the encapsulation algorithm)

6 The rest of the calculations depend on the value of λ.

If λ = 256, then:

H = Hash512 (r_);

 ІSSN 0485-8972 Радиотехника. 2019. Вып. 198 14

C’ – are younger 32 octets of H;

SKey’ – are SKeyLen octets of senior 32 octets of H (SKeyLen ≤32).

If λ = 512, then:

H1 = Hash512 (r_ || 1);

H2 = Hash512 (r_ || 2);

C’ – H1;

SKey’ – are SKeyLen octets of H2 (SKeyLen ≤64).

7 If C’coincides with C then SKey = SKey’; sign of success Success = OK, otherwise Success

= Error

5. Data encryption and authentication by a sender

During data encryption, consistent (agreed) functions, available to all subscribers, can be

applied. They contain MAC(.) messages authentication and a symmetric encryption algorithm

(Sym.Encrypt), for example [3, 14].

Subsequently, secret keys EK and МК, are produced using SKey, where EK is the key for

symmetric encryption and МК is a suitable authentication key for the message of pre-encrypted data.

(Algorithms for generating keys EK and МК from SKey can be determined by other standards).

5.1. Algorithm of data encryption and authentication by a sender

The algorithm is performed in the following sequence:

 messages (data, packet) Q are encrypted with the use of symmetric cipher on the key

EK, i.e.

C1 = Sym.Encrypt (Q, Ek);

 to authenticate C1ciphertext on MK authentication key, calculate the C2 authentication

code, i.e.

C2 = MAC (C1, Mk);

 finally, the sender sends (Сc, C1, C2) to the recipient.

5.2. Decryption and authentication of data by the recipient

The algorithms for decrypting and authenticating data by the recipient are executed in the

following sequence:

 as a result of decapsulation, the recipient has the value c',C',SKey',r';

 if r 'is t-small, c' = c and C '= C, then they output and apply the symmetric

authentication and decryption key to SKey'. Otherwise, they determine the error and

reject the secure message;

 the recipient calculates the message authentication code for C1 on the MK key

C2’ = MAC (C1, Mk)

 if C2’ coincides with C2 received from the sender, then the encrypted message C1 is

considered to be complete and authentic. Otherwise output "integrity violation" and stop

executing the decryption algorithm;

 the recipient decrypts the cryptogram C1 using the symmetric decryption algorithm

agreed with the sender on EK key, i.e.

Q = Sym.Decrypt (C1, Ek)

 the recipient receives the decrypted and authenticated Q data for further processing.

Note. If necessary, the order of encryption and authentication of Q data may be carried out in a

different order, that is, first decryption and then authentication.

ISSN 0485-8972 Радиотехника. 2019. Вып. 198 15

6. Analysis of cryptographic transformations complexity

The temporal characteristics of key data generation, encryption and decryption algorithms are

shown in Table 6. Encapsulation and decapsulation algorithms actually use encryption and

decryption primitives. Therefore, their temporal characteristics are not given. Processor (Intel (R)

Core (TM) i5-3.1 GHz) clock [10, 11] is used to measure performance. For comparison, the data [5]

were used for the ntruees787ep1 encryption algorithm, which is closest to the characteristics with

crypto-stability λ=256.

Table 6

Temporal characteristics of key data generation, encryption and decryption algorithms

Stability Generation
Encryption

(59 bytes)

Decryption

(59 bytes)

ntruees787ep1 16748110 111142 133926

λ=256 (n = 881) 4789644 87696 96604

λ=384 8065140 130556 143424

λ=512 11670676 160364 182724

The results of optimization of key data generation, encryption and decryption algorithms are

presented in [6 – 10].

Key generation. The most laborious part of the algorithm is the inversion calculation and

multiplication of polynomials in R/q field.

Inversion calculation. An extended Euclidean algorithm for polynomials is used to calculate

the inversion. The computational complexity of Euclidean extended algorithm is determined by the

number of division operations and the computational complexity of one operation.

The polynomials of degree n and n-1 are used as data for the inversion calculation. Performing

a single division operation reduces the degree of both polynomials by 1, i.e. the number of division

operations is n.

The computational complexity of the division operation depends on the degrees of polynomials

and the difference between them. It can be considered that the difference between degrees is one,

then, the number of coefficients processed by the division operation equals a smaller degree and

accordingly changes from n to 1. That is, labor intensity can be estimated as n-1 + n -2 +… + 1 = n

(n-1)/2. Thus, the overall complexity of the investment stage is O(n
3
).

Methods for optimization of calculations.

1 To apply SIMD operations to work with the coefficients – there are limitations associated

with variable block addresses.

2 Recalculation of inverse elements for coefficients.

Operation of polynomial multiplication

Computational complexity of multiplication of polynomials of general form O(n
2
).

Optimization through the use of polynomial F/3 features with compensation of dependence on

the key format enables you to pass from the quadratic to the linear dependence on the degree of the

polynomial.

The computational complexity of encryption and encapsulation operations

In fact, the encapsulation algorithm uses the encryption algorithm, and the decapsulation

algorithm uses the decryption algorithm. The rest of the operations performed for encapsulation /

decapsulation take relatively little time. That is why it is enough to consider the computational

complexity for encryption and decryption algorithms.

Conclusions

1. The generalized results of the implementation of the 1st stage of the international

competition for the creation of post-quantum ASEs, KEPs and ESs, proposed by NIST USA, as

 ІSSN 0485-8972 Радиотехника. 2019. Вып. 198 16

well as comparisons of most alternatives, allow us to make a conclusion about the prospects of

creating standards for these cryptographic transformations in polynomial rings (algebraic lattices)

[1 – 7]. Another interesting area that also deserves attention and exploratory research is the

construction of post-quantum cryptographic transformations using methods of the theory of fault-

free coding [15 – 17].

2. Mechanisms for constructing ASE and KEP are proposed in [2], the application of which

makes it possible to provide 128 bits of quantum and 256 classical crypto-stability, i.e. including

the 5
th

 level of cryptographic stability. But in our opinion, the problem of ensuring encryption and

encapsulation, including up to 7 levels of stability, is important both from theoretical and practical

point of view, since the 5th level of cryptographic stability for the quantum period is insufficient.

3. Therefore, the current problem is the creation and standardization of ASE and KEP

algorithms of 256 bit quantum and 512 classical cryptographic stability. Practically the problem of

creation and standardization of post-quantum algorithms of ASE and KEP of 5 – 7 levels of

cryptographic stability is solved in Ukraine based on cryptographic transformations using algebraic

lattices (polynomial rings).

4. The common parameters for ASE and KEPs of cryptographic transformations should be

calculated, provided that the required level of crypto-stability is ensured, as well as to ensure the

success of operations (such as no decryption errors) and to reduce the computational complexity.

A list of general parameters of the encryption algorithms and key encapsulation algorithms of

SKELA algorithms is shown in Table 1.

5. Only general parameters are used to calculate additional parameters. Recalculating

additional parameters makes it possible to reduce the computational complexity of basic

cryptographic transformation operations.

6. The asymmetric key pairs – private key f and public key h – are used for asymmetric

encryption and encapsulation of keys. They are calculated on the basis of the use of polynomials G,

F, whose degree is n, and the coefficients modulo p (p = 3), i.e. take the values 0, -1, 1. The result is

as follows: the private key f and the public key h (polynomials) and h (byte task h) calculated

simultaneously.

7. In the process of developing encryption algorithms, the NTRU encryption algorithm [4] has

been taken into account, which has been successfully tested over time since it has been in use for

almost 10 years. But it has a significant drawback that has to do with the possibility of a decryption

error. This drawback is absent in the SKELYA algorithm [10].

8. In developing the SKELYA algorithm, the modern practice of using the prime q as a module

instead of the number 2k is taken into account, and the polynomial xn – x – 1 instead of the

polynomial xn – 1, which provides protection against known attacks. Therefore, field

(/ [] / (1)nZ q x x x) is used as a field for NTRU Prime [5], but the parameters are calculated

taking into account the required levels of crypto-stability λ = {256, 384, 512} and ensuring that no

decryption errors exist.

9. In the encryption algorithm, the following data are used as input: string for encryption (m);

line length m (mLen); the recipient's public key h (R / q polynomial) and the corresponding octet

string (h). The following data are used is output: sign of Success (OK, ERROR); encrypted string E

in case of successful operation.

10. The following data are used as input data in the decryption algorithm: E – a byte string with

an encrypted message; f – private key of the recipient; h (R / q – the recipient's public key

polynomial) and the corresponding octet string (h). The following data are used as output data: sign

of Success (OK, ERROR); open message (in case of successful operation) and length of open

message (in case of successful operation).

11. Key data, generated identically as for encryption, are used in the encapsulation algorithm.

In fact, encapsulation algorithms use encryption and decryption algorithms of the message defined

in advance and indicated by m_kem

ISSN 0485-8972 Радиотехника. 2019. Вып. 198 17

12. An arbitrary allowed hash function, that provides a result length of 512 bits, is used as a

hash function.

13. The input data in the encapsulation algorithm are the length of the key for symmetric

encryption of K_bytes (K_bytes ≤λ / 8) and the recipient’s public key h (polynomial R/q) and the

corresponding octet string (h), and the output data are a sign of success (Success = OK, ERROR),

Cc encapsulated key and a SKey key for symmetric encryption of K_bytes (K_bytes) length.

14. The input data in the decapsulation algorithm are as follows: symmetric encryption key of

K_bytes (K_bytes ≤λ / 8 length; encapsulated Cc key; recipient private key f and recipient public

key h (polynomial R/q) and corresponding octet string (h).

15. The joint use of encryption algorithms and encapsulation of keys makes it possible to

produce (calculate) symmetric encryption and authentication keys on communication channels,

which in turn makes it possible to exchange the protected information with high speed and ensuring

its integrity, confidentiality and cryptographic integrity of such key data.

16. When developing algorithms for encryption and encapsulation of keys, optimization

methods of cryptographic transformations based on multiplication of polynomials were applied. To

measure the characteristics of time complexity, processor (Intel (R) Core (TM) i5-3.1 GHz) clock

cycles were used [9,10]. To compare the obtained complexity data, we used the data [5]

(ntruees787ep1 encryption algorithm, which is closer to the characteristics with cryptographic

strength λ = 256).

17. Thus, this article presents the main results and data on encryption algorithms, key

encapsulation and their use for encryption and authentication of data on communication channels.

They are achieved by means of solving such particular problematic tasks as: calculating general and

additional parameters; generating asymmetric pairs of encryption keys and encapsulation;

development of asymmetric encryption algorithms (encryption and decryption); development of

asymmetric encapsulation algorithms and key decapsulation; developing proposals (algorithms) for

calculating the keys of secure communication sessions for their use in symmetric data encryption in

communication channels, as well as optimizing and assessing the complexity of direct and inverse

transformations during encryption and encapsulation.

18. The main advantages of asymmetric encryption and key encapsulation algorithms are:

providing 5 – 7 levels of post-quantum and classical stability; security against special attacks, as

well as providing symmetric data encryption on communication channels is the use of block and

stream high-speed transformations

References:

1. Lily Chen Report on Post-Quatum Cryptography. NISTIR 8105 (DRAFT) / Lili Chen, Stephen Jordan, Yi-Kai-

Liu, Dustin Moody, Rene Peralta, Ray Perlner, Daniel Smith-Tone // Electronic resource. Access mode:

http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf.

2. Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process / Gorjan

Alagic and others // https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf

3. Gorbenko Yu.I. Methods for construction and analysis of cryptographic systems. Kharkiv : Fort, 2015. 959 p.

(In Ukr.).

4. American National Standard X9.98-2010. Lattice-based polynomial public key encryption algorithm, Part 1:

key establishment, Part 2: data encryption. 2010.

5. Daniel J. Bernstein NTRU Prime / Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Christine

van Vredendaal // Electronic resource. Access mode: https://ntruprime.cr.yp.to/ntruprime-20160511.pdf.

https://bench.cr.yp.to/results-encrypt.html

6. Gorbenko I.D. General statements and analysis of the end-to-end encryption algorithm NTRU Prime IIT

Ukraine / I.D. Gorbenko, E.G. Kachko, MV Esina // Radiotekhnika. Kharkov : KNURE, 2018. Is. 193. P. 5-16.

7. Gorbenko I. D. Calculation of general parameters for NTRU Prime Ukraine of 6-7 levels of stability /

I. D. Gorbenko, A. N. Alekseychuk, O. G. Kachko, M. V. Yesina, I. V. Stelnik, S. O. Kandy, V. A. Bobukh, V. A.

Ponomar // Telecommunications and Radio Engineering, 2019. Vol. 78, Is. 4. P.327-340. DOI:

10.1615/TelecomRadEng.v78.i4.40.

8. Gorbenko I.D. Methods of building general parameters and keys for NTRU Prime Ukraine of 5th–7th levels of

stability. Product form / I.D. Gorbenko,O.G. Kachko, Yu.I. Gorbenko, I.V. Stelnik, S.O. Kandyi, M.V. Yesina //

http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://ntruprime.cr.yp.to/ntruprime-20160511.pdf
https://bench.cr.yp.to/results-encrypt.html

 ІSSN 0485-8972 Радиотехника. 2019. Вып. 198 18

Telecommunications and Radio Engineering, 2019. Vol. 78, Is. 7 P. 579-594. DOI:

10.1615/TelecomRadEng.v78.i7.30.98.

9. CALCULATION OF GENERAL PARAMETERS FOR NTRU PRIME UKRAINE OF 6-7 LEVELS OF

STABILITY / I. D. Gorbenko, A. N. Alekseychuk, O. G. Kachko, M. V. Yesina, I. V. Stelnik, S. O. Kandy,

V. A. Bobukh,. A. Ponomar . pages 327-340 DOI: 10.1615/TelecomRadEng.v78.i4.40. Vol. 78, 2019 Is. 4.

10. Kachko O., Gorbenko I., Yesina M., Kandiy S. POLYNOMIALS MULTIPLICATION FUNCTIONS FOR

ORDINARY AND PRODUCT FORM OF ONE OF THE POLYNOMIALS REPRESENTATION:

https://github.com/KandiyIIT/NTRU-POLYNOMIALS-MULTIPLICATION.
11. Ran Canetti, Hugo Krawczyk Analysis of Key-Exchange Protocols and Their Use for Building Secure

Channels. Electronic resource. Access mode: http://iacr.org/archive/eurocrypt2001/20450451.pdf.

12. Post-Quantum Cryptography. Electronic resource. Access mode: https://csrc.nist.gov/projects/post-quantum-

cryptography/round-1-submissions.

13. EUF-CMA and SUF-CMA. Electronic resource. Access mode: https://blog.cryptographyengineering.com/euf-

cma-and-suf-cma/.

14 DSTU ISO / IEC 18033-2: 2015 (ISO / IEC 18033-2: 2006, IDT) Information Technology. Methods of

Protection. Encryption Algorithms. Part 2. Asymmetric Ciphers. (In Ukr.)

15. Kuznetsov A., Pushkar'ov A., Kiyan N. and Kuznetsova T. Code-based electronic digital signature // 2018

IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kyiv, Ukraine,

2018, pp. 331-336. DOI: 10.1109/DESSERT.2018.8409154.

16. Kuznetsov A. A., Gorbenko Yu. І., Prokopovych-Tkachenko D. I., Lutsenko М. S., Pastukhov M. V. NIST

PQC: Code-Based Cryptosystems // Telecommunications and Radio Engineering. 2019. Vol. 78. Is. 5, pp. 429-441.

DOI: 10.1615/TelecomRadEng.v78.i5.50.

17. Gorbenko Y., Svatovskiy I. and Shevtsov O. Post-quantum message authentication cryptography based on

error-correcting codes // 2016 Third International Scientific-Practical Conference Problems of Infocommunications

Science and Technology (PIC S&T), Kharkiv, 2016. P. 51-54. DOI: 10.1109/INFOCOMMST.2016.7905333.

Kharkiv National V.N. Karazin University;

JSC "Institute of Information Technologies";

 Received 09.08.2019

http://dl.begellhouse.com/journals/0632a9d54950b268,70ef648871ea3512,76d885952dce9f81.html
http://dl.begellhouse.com/journals/0632a9d54950b268,70ef648871ea3512,76d885952dce9f81.html
http://iacr.org/archive/eurocrypt2001/20450451.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://blog.cryptographyengineering.com/euf-cma-and-suf-cma/
https://blog.cryptographyengineering.com/euf-cma-and-suf-cma/
http://www.dl.begellhouse.com/journals/0632a9d54950b268.html

