
 ІSSN 0485-8972 Радиотехника. 2018. Вып. 193 186

UDC 004.056

А.V. POTII,

 А.S. КАRPENKO

REALIZATION OF THE MECHANISM OF CONTROL SOFTWARE INTEGRITY

IN POST QUANTUM PERIOD

1. Introduction

Digital signature is important primitive of modern cryptography. Most security protocol such

as SSH, TLS, SSL are using digital signature for verify the integrity and authenticity of the informa-

tion. The resistance of the cryptographic algorithms with the public key is based on the computa-

tional complexity of the problems of factorization of large integers, discrete logarithms and trans-

formation of the points on the elliptic curve. The known algorithms are RSA, DSA, and ECDSA

(Table 1) [1].

Investigations in the sphere of quantum calculations form up new challenges in the given sec-

tor of the cryptography. With using of the quantum computer and the Shor algorithm the known at

present crypto algorithms with the public key would be compromise. Today, regional organizations

such as NIST and ETSI are already research in this field. The workgroups of ETSI and NIST de-

termined the promising trends, within the framework of which there could be obtained acceptable

solutions – the supersingular elliptic curves, the multi-variative cryptography, the cryptography on

the basis of the noise immunity encoding, and the cryptography based on the hash functions. Re-

cently, NIST open a competition for the standardization of the digital signature algorithm in the post

quantum stage. This publication focuses on algorithms based on the use a hash function. Their main

advantage is that they rely on simple assumptions on hash functions, such as collision or second-

preimage resistance, instead of a specific algebraic structure. In particular, if the attack is detect in a

hash function, one can replace it by another function without modifying the overall structure of the

scheme. Most hash-based schemes also come with relatively simple proofs of security reductions to

the hash function’s properties. Their main drawback is signature size, which typically grows with

the number of messages signed by a key pair [2-5].

A significant part of the research is focused on increasing of their efficiency. Besides, the sim-

plest hash-based schemes are stateful, which means that a signer must maintain a state that is modi-

fy every time a signature is issued. This requirement can be a burden because trivial forgeries be-

come possible if it is violated once, e.g. if two signatures are issued in the same state. Stateful

schemes must therefore guarantee that this kind of misuse will not happen, which can be non-trivial

for practical systems. In theory, somebody can rolling back the state of a machine after a crash,

cloning virtual machines, or maintaining a pool of signing machines working in parallel. Hence, it is

advisable to use a stateless scheme GRAVITY [6].
 Тable 1

Security level of the applied algorithms

Algorithm
Key

length

Security level

Classical

computer

Quantum

computer

RSA-1024 1024 b 80 b 0 b

RSA-2048 2048 b 112 b 0 b

ECC-256 256 b 128 b 0 b

ECC-384 384 b 256 b 0 b

ISSN 0485-8972 Радиотехника. 2018. Вып. 193 187

2. Stateless algoruthm

GRAVITY scheme have three stage: key generation, signature, verification and batch signature

and verification.

An instance of the GRAVITY signature scheme requires the following parameters: the hash

output bit length n, a positive integer; the Winternitz [7] depth w, a power of two such that w>=2;

the PORS [6] set size t, a positive power of two; the PORS subset size k, a positive integer such that

k<=t; the internal Merkle [7] tree height h, a positive integer; the number of internal Merkle [7]

trees d, a non-negative integer; the cache height c, a non-negative integer; the batching height b, a

non-negative integer; the message space M, usually a subset of bit string {0,1}*. From this parame-

ters are derive the follow values [5]:

 The Winternitz width l

l=μ+⌊log2(μ(w−1))/log2w⌋+1where μ=n/log2w (1)

 The PORS set T={0,..., t − 1}.

 The address space A

A={0,…,d}×{0,...,2c+dh− 1}×{0,...,max(l,t) − 1} (2)

 the public key space PK= Bn.

 The secret key space SK= Bn
2.

 The signature space SG

SG=B×Bk× Bk(log2t - |log2k|) × (Bl× Bl)
d
×Bc (3)

 The batched signature space SGB

SGB =Bn
b ×{0,…,2b−1}×SG (4)

 The public key size, of n bits.

 The secret key size, of 2n bits.

 The maximal signature size, of

sigsz = (1 + k + k(log2 t − ⌊log2 k⌋) + d(l + h) + +c)n bits.

 The maximal batched signature size, of

sigsz + bn + b bits.

2.1 Primitives

GRAVITY signature scheme based on next primitives that depend on scheme parameters [6]:

 a length-preserving hash function F : Bn → Bn

 a length-halving hash function H : Bn
2 → Bn

 a pseudo-random function G : Bn × A → Bn

 a general-purpose hash function H∗ : M → Bn

2.2 Key generation

Key generation takes as input 2n bits of random numbers and outputs the secret key and public

key.

 Generate the secret key from 2n bits of random numbers and put to by address (seed,

salt) in the Merle tree

sk = (seed, salt) ←Bn
2 (5)

 For each i that 0 ≤ i < 2c+h generated a Winternitz public

key(WOTS-genpk) and generate next to new address for keys pair (make-addr(0, i))

 ІSSN 0485-8972 Радиотехника. 2018. Вып. 193 188

pi ← WOTS-genpk(seed, make-addr(0, i)) (6)

 Generate the public key (root of Merkle-tree) where x is array of hashes leaf

pk ← Merkle-rootc+h(x0, . . . , x2c+h−1) (7)

2.3 Signature

Message takes as input a m hash and secret key

sk = (seed, salt) and outputs a signature computed as follow [6]:

 Compute the public salt s ← H(salt, m).

 Compute the hyper-tree index and random subset as j, (x1, . . . , xk) ← PORS(s, m).

 Compute the PORST [6] signature and public key where oct is a parameter of authen-

tication path[6]

(σd, oct, p) ← PORST-sign(seed, make-addr(d, j), x1,..., xk) (8)

For i ∈{d−1,…,0} do the following:

 Compute the WOTS (Winternitz one time signature) [7] signature

σi ← WOTS-sign(seed, make-addr(i, j), p) (9)

 compute p ← WOTS-extractpk(p, σi).

 Set j′ ← ⌊j/2h⌋.

 for u ∈{0,…,2h−1}compute the WOTS public key (WOTS-genpk)

pu ← WOTS-genpk(seed, make-addr(i, 2
h`

j

+ u)) (10)

 Compute the Merkle authentication path

(Merkle-authh)

Ai ← Merkle-authh(p0, . . . , p2h−1, j − 2h`j) (11)

 set j ← j′.

 For 0 ≤ u < 2c+h compute the WOTS public key

pu ← WOTS-genpk(seed, make-addr(0, u)) (12)

 Compute the Merkle authentication

(a1, . . . , ah+c) ← Merkle-authh+c(p0, . . . , p2h+c−1, 2
h
j) (13)

 Set A ← (ah+1,…,ah+c).

 The signature is

(s, σd, oct, σd−1, Ad−1, ..., σ0, A0, A) (14)

2.4 Verification

Verification function takes a hash message, public key and a signature

(s,σd,oct,σd−1,Ad−1,...,σ0,A0,A) and verifies it as follows[6]:

 Compute the hyper-tree index and random subset as j, (x1. . . xk) ← PORS(s, m).

 Compute the PORST public key

p ← PORST-extract pk(x1. . . xk, σd, oct) (15)

 If p = ⊥, then abort and return 0.

For i ∈{d−1,…,0} do the following:

 Compute the WOTS public key p ← WOTS-extract pk(p, σi).

 Set j′ ← ⌊j/2h⌋.
 Compute the Merkle root

ISSN 0485-8972 Радиотехника. 2018. Вып. 193 189

p ← Merkle-extracth(p, j − 2hj′, Ai) (16)

 set j ← j′.

 Compute the Merkle root

p ← Merkle-extractc(p, j, A) (17)

 The result is 1 if p = pk, and 0 otherwise.

2.5 Batch signature

Batch signature takes as input a sequence of messages (M1,...,Mi) ∈ Mi with 0 < i ≤ 2b and a

secret key

sk = (seed,salt) along with its secret cache, and outputs i signatures σj, computed as follows[5]:

 For j ∈ {1,...,i} compute the message digest

mj ← H∗(Mj).

 For j ∈ {i+1,…,2b}set mj ←m1.

 Compute m ← Merkle-rootb(m1, . . . , m2b).

 Compute σ ← S(sk, m).

 For j ∈ {1,...,i} the j-th signature is

σj ← (j,Merkle-authb(m1,...,m2b,j),σ).

For b = 0, we simplify SB(sk,M) to S(sk,H∗(M)).

2.6 Batch verification

Batch verification function V takes as input a public key pk, a message M ∈ M and a signature

(j, A, σ), and verifies it as follows [6]:

 Compute the message digest m ← H∗(M).

 Compute the Merkle root.

m ← Merkle-extract b(m, j, A).

 The result is V (pk, m, σ).

For b = 0, we simplify VB(pk,M,σ) to V(pk,H∗(M),σ).

3. Security proofs

The security of hash based signature depend on using in this scheme hash function. In this ar-

ticle suggests using DSTU 7564:2014 [7].

Ukrainian national hashing function standard is capable of operation with the hash value

lengths of 256/384/512 bits. The above hash function base on the Rijndael structure. The DSTU

7564:2014 cryptographic strength is provide in Table II [7].
 Table 2

Strength against the cryptographic attacks

Type of attack Кupyna – 256

Collision 2
128

Preimage 2
256

Second preimage 2
256

Fixed point 2
256

Increase of the

length

2
256

 ІSSN 0485-8972 Радиотехника. 2018. Вып. 193 190

4. Development cycle

In this project, propose to use Continuous integration/Continuous delivery (CI/CD) [9] soft-

ware development practice. It methodology consist of a continuous cycle of plan, code, build, test,

release, deploy, operate, monitor. Continuous integration focuses on blending the work products of

individual developers together into a repository. Often, this is done several times each day, and the

primary purpose is to enable early detection of integration bugs, which should eventually result in

tighter cohesion and more development collaboration. The aim of continuous delivery is to minim-

ize the friction points that are inherent in the deployment or release processes. Typically, the im-

plementation involves automation of each of the steps for build deployments such that a safe code

release can be done—ideally—at any moment in time.

For development applications propose is use CI/CD tools, in particular, Jenkins, Gitlab on

Amazon web service (Fig.1) [9].

Figure 1. Develop application cycle

Public-key infrastructure consist of three level: web application, desktop application and hard-

ware application (Fig. 2).

Figure 2. Architecture applications

The web application is being built using C# languages and ASP .NET MVC technology, in

turn, desktop application is being built using C# as well and Windows Form technology, hardware

application in eKey is being built using C language. Desktop application is create security channel

with eKey and transfer data for generation key pair, singing and verification documents.

5. Conclusion

In this article, describe stateless algorithm GRAVITY [6]. These schemes rely on a limited

number of assumptions that form collision-resistant, one-way, undetectable and pseudo-random

function families. This means that their security is relatively well-understood, even against hypo-

thetical adversaries with a quantum computer. Besides, the stateless property gives some ―misuse-

resistance‖ guarantees for signers that cannot reliably maintain a state over the lifetime of a key

ISSN 0485-8972 Радиотехника. 2018. Вып. 193 191

pair. Another advantage of hash-based signatures is speed and simplicity of verification. On the

signer side, we have seen that several trade-offs are available of signature size, computational re-

sources, memory resources, as well as the planned number of signatures issued by a key pair. De-

velopment of group application show how to work public-key infrastructure with using stateless

quantum-resistant algorithm.

References:

1. ETSI GR QSC 001 V.1.1.1 (2016-07). Quantum-Safe Cryptography (QSC); Quantum-safe algorithmic framework.

2. NIST PQC workshop: SAFEcrypto Project, M. O’Niell. 2015.

3. NIST Workshop on Cyber Security in a Post-Quantum World (2015). PQCrypto project, T Lange.

4. PQCrypto. Initial recommendation of Long-term secure post-quantum systems.

5. Endignoux G. Design and implementation of a post-quantum hash-based cryptographic signature scheme: mater’s

thesis:july 2017 /Guillaume Endignoux – Switzerland,2017. 42 p.

6. Gravity-Sphincs : Kudelski Security : 25 p./Jean-Philippe Aumasson, Guillaume Endignoux.

7. Becjer G. Merkle signature schemes, Merkle Trees and Their Cryptanalusis: 2013.

8. Gorbenko Yu.І., (2015), Construction and analysis of systems, protocols, and methods of cryptographic

information protection. Pt. 1, Methods of construction and analysis, standardization and application of

cryptographic systems, Kharkiv, Ukraine: Fort, (in Ukrainian).

9. Ellingwood. J. CI/CD tools comparison: Jenkins,Gitlab CI etc.[Internet resource]/ Justin Ellingwood. [Access

mode]: https://www.digitalocean.com/community/tutorials/ci-cd-tools-comparison-jenkins-gitlab-ci-buildbot-

drone-and-concourse. 02.02.2017.

Национальный аэрокосмический

университет имени Н.Е. Жуковского «ХАИ»

Поступила в редколлегию 27.03.2018

https://www.digitalocean.com/community/tutorials/ci-cd-tools-comparison-jenkins-gitlab-ci-buildbot-drone-and-concourse
https://www.digitalocean.com/community/tutorials/ci-cd-tools-comparison-jenkins-gitlab-ci-buildbot-drone-and-concourse

