

ISSN 0485-8972 Радиотехника. 2017. Вып. 191 5

МЕТОДЫ И МЕХАНИЗМЫ

КРИПТОГРАФИЧЕСКОЙ ЗАЩИТЫ ИНФОРМАЦИИ

UDC 004.056.55

O. KACHKO, Yu. GORBENKO, M. YESINA, O. AKOLZINA

ASYMMETRIC ENCRYPTION ALGORITHM OPTIMIZATION BASED

ON USING NTRU PRIME MATHEMATICS

Introduction

The development in quantum computer creation caused the need to search for quantum-

resistant cryptographic algorithms and requirements formation for them. So NIST at the fall of 2017

announced a request for post-quantum algorithms search, including algorithms for asymmetric en-

cryption [2]. It is known, for practical application, algorithms have to satisfy the requirements of

resistance, performance and should be lightweight. During the work, optimization of a perspective

post-quantum encryption NTRU-like algorithm was carried out. The encryption scheme from stand-

ard ANSI X9.98-2010 [1] and NTRU Prime parameters [3] were used in implementation.

1. NTRU Prime cryptosystem

Parameters for key generation, encryption and decryption, their appointment and formulas are

specified in table 1 below. Then we describe formulas for keys generation, encryption and decryp-

tion according to [3].

Table 1
Denotation Appointment Formula

n Polynomial order. Determines the number of its coefficients. A prime num-

ber for which the polynomial 1nx x is irreducible.

max{3, 2 }n t

R
Field of polynomials []Z x with modulus 1nx x . [] / (1)nZ x x x

/ 3R Field of polynomials (/)[]Z q x with modulus 1nx x . (/ 3)[] / (1)nZ x x x

/R q
Field of polynomials (/)[]Z q x with modulus 1nx x . (/)[] / (1)nZ q x x x

p Smaller modulus. 3p

q Bigger modulus, a prime number, by which all coefficients of a polynomial

/R q are reduced.

48 3q t

t The natural number, determines the number of non-zero elements of a poly-

nomial.
1t

k Security strength (level).

m Secret message. The number of 0, 1 and -1, is bigger or equal t . / 3m R

e Encrypted message. /e R q
g Random polynomial, that has 2 / 3N non-zero elements. The number of 1

and -1 is not necessarily equal.

The secret parameter used to calculate the public key.

/ 3g R

f Random t -small element (polynomial) is a secret. (1 3)modf F q

/f R q

F Random t -small element (polynomial) that defines a private key / 3F R

h The sender's public key. Invertible element in /R q .

The length of h is equal to 2logn q .

3 / /h g f R q

r Blinding polynomial, random t -small element. / 3r R

b Random sequence (salt) that pads the message (Length of b is defined by

security strength).

 ІSSN 0485-8972 Радиотехника. 2017. Вып. 191 6

Keys generation. By definition secret key is a polynomial f , (1 3)modf F q , where

/ 3F R , the number of non-zero elements 1|| || 2F t , and corresponding public key is polynomial

3 / /h g f R q , where / 3g R .

For any secret key f and corresponding public key h define encryption and decryption func-

tions hE and fD :

(,) () modhe E m r m rh q , , / 3m r R , 1|| || 2r t , (1)

() ((mod)mod3fD e ef q , /e R q . (2)

2. Experimental research of multiplying algorithms

Encryption and decryption algorithms use the multiplication functions of polynomials that have

big computational complexity, therefore we investigated various methods of calculating the product

first of all.The following methods were studied:

 A1 – “School” method – it is provided for comparison and verification of the results cor-

rectness;

 A2 – Toom-Cook's algorithm. It is implemented according to the [3] recommendations.

Even without interpolation, time characteristics are worse than the rest of the algorithms;

 A3 – FFT, Fast Fourier transform (algorithm with pre-calculations). Time characteristics

approximately coincide with the time characteristics for the Toom-Cook's algorithm;

 A4 – Our algorithm that takes into account the special structure of a polynomial with coef-

ficients (0, -1, 1) for which numbers are given, using AVX2 commands;

 A5 – Algorithm A4, which uses 2 threads.

 A6 – Algorithm A4, which uses 4 threads.

The results of the experimental research for some parameters from NTRU Prime are shown in

Table 2 The first column defines the parameter number in the Table B Parameters [3].

Table 2

N A1 A2 A3 A4 A5 A6

439 403796 152191 143679 40179 26588 18436

457 451344 157148 147812 37692 26336 18492

461 459088 157196 148476 46116 29808 20212

461 459120 157064 148352 46188 27444 20008

467 471340 157100 148196 24852 17636 14556

463 462736 157196 148268 40900 24724 18864

463 462828 156972 148608 43312 28768 19700

463 462676 157164 148460 46788 30672 20220

479 494224 157144 148020 36664 22468 18096

479 494156 157204 148228 39408 26168 18236

491 519168 157096 148556 41048 25784 19084

Conclusions on the multiplication methods:

1. The usage of complex algorithms (A2, A3) that do not take into account special structure of

the polynomial with coefficients (-1, 0, 1) makes no sense.

2. The polynomial with coefficients (-1, 0, 1) is better to be specified using non-zero elements

indices (A4, A5, A6).

3. The use of threads in case of modulus reduction on the multicore processor makes sense.

After completing the multiplication operation, we obtain the polynomial, coefficients of which

don’t exceed *q n , and the polynomial degree is 2 –1n . This polynomial must first be reduced by

modulus 1nx x , after that we obtain the polynomial of n -degree, and then each of n coeffi-

cients are reduced by modulus q .

ISSN 0485-8972 Радиотехника. 2017. Вып. 191 7

3 Reducing by modulus 1 n
x x optimization

For reduction by modulus 1nx x it is sufficient to polynomial coefficients with indices

0 –1n to add (subtract) corresponding coefficients with indices ...2 – 2n n .

To simultaneously reduction the coefficients block using AVX2 operations.

4 Reducing by the modulus q – Barrett reduction optimization

To accelerate the method, the constants, which depend only on the values of n , q , are comput-

ed ones when setting parameters [9].

Barrett bk ,bc constants pre-calculation:

bk is chosen such that 2 *bk p q ; (3)

2 / bkbc q is calculated.

For each polynomial coefficient ih , it must perform the following calculations:

– *((*)) i i ih h h bc bk q . (4)

To simultaneously reduction by modulus q the coefficients block using AVX2 operations.

5. Optimization of Blinding polynomial calculation algorithm

Blinding polynomial calculation is performed according to the Blinding Polynomial Generation

Method (BPGM) – Algorithm 18 [1]. The algorithm uses the index generation function (IGF) by

which the bit string (IGF state s) creates, with the length *minCallsR Hlen (see Algorithm 20 [1]).

When implementing the creation function s , a constant part is formed that is used at each step of

the calculation of the hash. When forming a hash, AVX2 commands are used.

To optimize the calculation of polynomial coefficients in the first step, an array of coefficients

is formed fully. At the second step, the possibility of their application is checked. If necessary, the

bit string expands.

5.1. Optimization of IGF state s formation

For option 1, use of the hash function as proposed in the standard [1]. To optimize the imple-

mentation of the s creation function, a constant part is formed that is used at each step of the hash

value calculation. When forming a hash value, AVX2 commands are used.

For option 2, when implementing the s creation function, the initial string and its length are de-

fined as for option 1, but instead of multiple recalling of the hash function, the multiple encryption

function call for the SALSA-20 algorithm is used [7]. For the next step of encrypting, the result for

the previous step is selected. The number of steps compared to the algorithm for option 1 is reduced

due to the fact that the length of the initial state is longer than the length of the hash value.

For option 3, instead of the function for algorithm SALSA-20, the encryption function for the

SNOW-20 algorithm is used [4].

5.2. Coefficients calculation optimization

To optimize the calculation of the polynomial coefficients in the first step, a completely array

of coefficients is formed. At the second step, the possibility of their application is checked. If neces-

sary, the bit string is expanded.

Blinding polynomial is used for data encryption and decryption. The effect of various methods

of blinding polynomial formation is shown in table 3.

6. MGF algorithm optimization

The algorithm uses the minCallMask parameter (see Algorithm 19 [1]) to generate a bit string.

The bit string formation optimization is made due to the fact that the constant part is used at each

step of the hash calculation is calculated only once. When forming a hash, AVX2 commands are

 ІSSN 0485-8972 Радиотехника. 2017. Вып. 191 8

used. For fast conversion of a byte string into a polynomial, a pre-computed table is used, the entry

point of which is byte and each row includes 5 coefficients.

7. Encryption algorithm optimization

In the encryption algorithm 2 branches are executed in parallel. The first branch includes Steps

4-8 of the encryption algorithm (Algorithm 23 [1]). The second branch includes Steps 9-10 (Algo-

rithm 23 [1]). To implement parallel branches, the Open MP parallelization standard is used [8].

The encryption algorithm coincides with Algorithm 23 (ANSI X 9.98 [1]). Next, the notation is

used from Algorithm 23.

1. For strings M and sData , intersecting memory is used. This allows you to reduce the

amount of memory required by the message length and reduce the time it takes to copy the string

for encryption (Step 5 and Step 9).

2. To accelerate the formation of Mtrin (Step 8), the bit string is processed in portions of 3

bytes, which allows you to immediately get 8 polynomial coefficients. The case is handled correctly

when the length of the string is not multiple 3.

3. To exclude the need to convert a public key into a byte string (Step 9), it is stored in the con-

tainer in the form of a byte string and in the form of a polynomial.

4. For blinding polynomial generation (Step 10) a BPGM method is used, which optimization

will be described above (see 5).

5. To calculate *r h (Step 11), the multiplication function is used for one or multi-core proces-

sor according to the execution environment. The maximum number of cores that the function uses is

4.

6. Step 12 and Step 13 are executed as one step.

7. The polynomial generation to mask mask (Step 14 of Algorithm 19 [1]).

8. Steps 15-18 are executed as one step in which the modules are formed and the numbers of

values -1, 0, 1 are calculated, their correctness is checked and the ciphertext value is calculated.

9. The result is an array of bytes that we obtain by converting a polynomial into an array of

bytes according to the package algorithm. To optimize the latter, separate algorithms are developed,

depending on the bit length q .

8. Decryption algorithm optimization

The decryption algorithm is executed according to Algorithm 24 [1]. Next, the notations are

used from Algorithm 24.

1. Steps 1-3 are combined in one step. The multiplication algorithm А4–А6 is used to multiply

polynomials depending on the number of processor cores. The number of non-zero elements of re-

ceived polynomial is counted simultaneously with its formation.

2. Steps 4-6 are combined in one step, that allows to form in one cycle a byte row to calculate

0 4c R .

3. Step 7 optimization (see paragraph 6).

4. To optimize Step 8, the cycle is deployed to simultaneously receive 4 bytes of string.

5. Steps 9, 10, 11 are combined in one step. That allowed in one cycle to form a byte string.

6. Step 12 of the algorithm actually determines the message after the decryption. Further, the

“speculative” execution of the code that uses these data may be continued. The following steps can

be performed in parallel with the use of the obtained data. If in result of additional checks will be

obtained a negative result, the code execution after the use of decrypted data should be determined

to be invalid. In case of successful additional verification, the executed code is accepted as valid.

Additional checks include Steps 13-17.

7. For Step 13, you do not need to convert the public key into a byte string, it is stored in this

format.

8. Step 14 optimization to form a blinding polynomial (see paragraph 5).

9. Step 15 polynomials multiplying.

ISSN 0485-8972 Радиотехника. 2017. Вып. 191 9

9. Time rates of encryption and decryption functions

The results of the experimental research for some parameters from NTRU Prime are shown in

Table 3. The first column defines the parameter number in the Table B Parameters [3]. Number ring

from 0. Parameter № 64 (n=739, q=9829) is given for comparison with the data given in [3]. Pa-

rameter №74 (n=761, q=4591) is chosen for comparison with the data given in [5].

 Table 3

№ N Q Encrypt Decrypt Decrypt

 Hash Salsa20 Snow20 Hash Salsa20 Snow20 Decrypt Check

0 439 6833 56364 40456 35408 81356 64280 60016 29048 28508

1 457 6037 62712 38200 33712 87948 61448 56868 30500 28496

4 467 3911 52340 32016 29252 72760 51528 48532 26908 23320

5 463 6529 64336 39124 35288 90484 63256 59072 32352 29220

6 463 6841 66240 40628 36268 94884 66448 61464 32336 30884

8 479 5689 62800 38396 34144 87748 61556 57320 31000 28360

9 479 6089 64444 39072 34796 90624 62596 58352 32168 28948

10 491 6287 67464 41304 36188 94220 65984 61500 31368 30600

15 503 2879 50460 30536 27844 87748 61556 47116 31000 28360

17 523 3331 54192 33112 30812 90624 62596 51224 32168 28948

64 739 9829 104916 61597 53876 145516 100152 93224 48636 46488

74 761 4591 73456 44120 40032 100140 71480 67728 37580 30920

For encryption and decryption operations, there are 3 modes for creating a random string to cre-

ate a blinding polynomial (hash, salsa20, snow20), see paragraph 5. For both functions, we get the

best results for the last mode.

The last 2 columns determine the time taken to decrypt and verify the decryption correctness. In

the case of parallel execution of the verification operation with other encryption-decryption opera-

tions, you can balance the time required for encryption and decryption.

The last row in the table specifies the results obtained for the parameters specified in [5]. These

parameters correspond to a cryptographic stability of more than 200.

Authors [5] received the results:

Encryption: 59600 and decryption 97452 cycles respectively.

In the case of the hash value using, our encryption operation implementation loses the specified

ones in the by 25%, and the decryption operation – 5%. When using SNOW 2.0, our implementa-

tion wins 30% for encryption algorithm and 29% for decryption algorithm.

In [6] – one of the algorithms submitted to the competition (Kyber), the following performance

data after optimization using AVX2 are given:

Encryption – 119652;

Decryption – 125736.

Compared to our results for the best option, we get the winning: 65% for encryption and 44%

for decryption.

Conclusions

According to the results of the work we can made the following conclusions:

1. During optimization great attention was paid to multiplication operation, as it is the most

time consuming. Usage of complex multiplying algorithms, which don’t take into account special

polynomial structure with coefficients (-1, 0, 1) doesn’t make sense. The polynomial with coeffi-

cients (-1, 0, 1) is better to be specified using non-zero elements indices. The use of threads in case

of reduction by modulus on the multi-core processor makes sense. Usage of AVX2 operations for

reduction by modulus polynomial 1nx x and prime q and for Barrett algorithm for reduction by

modulus q are effective and accelerates multiplication speed.

 ІSSN 0485-8972 Радиотехника. 2017. Вып. 191 10

2. Blinding polynomial generation, coefficient calculation, blinding polynomial generation and

index generation function optimizations were also made.

3. Encryption and decryption algorithms were optimized due to the parallel computing.

4. Three algorithms of blinding polynomial formation were studied (hash, salsa20, snow20),

the best time rates were obtained for Snow 2.0.

5. In case of usage encryption algorithms our implementation wins 30 % for encryption algo-

rithm and 29 % for decryption algorithm.

6. Compared to the data given in [6], we have got the winning: 65 % for encryption and 44%

for decryption.

References: 1. American National Standard X9.98-2010. Lattice-based polynomial public key encryption algorithm,

Part 1: key establishment, Part 2: data encryption. – 2010. 2. Electronic resource: https://csrc.nist.gov/projects/post-

quantum-cryptography. 3. Bernstein D.J., Chuengsatiansup Ch., Lange T., van Vredendaal Ch. NTRU Prime // Cryp-

tology ePrint Archive: https://ntruprime.cr.yp.to/ntruprime-20160511.pdf. 4. Patrik Ekdahl, Thomas Johansson. A New

Version of the Stream Cipher SNOW // SAC 2002: Selected Areas in Cryptography pp 47-61. 5. Daniel J. Bernstein,

Chitchanok Chuengsatiansup, Tanja Lange, Christine van redendaal. NTRU Prime: reducing attack surface at low cost

// Cryptology ePrint Archive: https://eprint.iacr.org/2016/461. 6. Joppe Bos, Leo Ducas, Eike Kiltz. CRYSTALS –

Kyber: a CCA-secure modulus-lattice-based KEM // https://eprint.iacr.org/2017/634. 7. Daniel J. Bernstein. Salsa20

design // https://cr.yp.to/snuffle/design.pdf 8. Electronic resource http://www.openmp.org/. 9. P D Barrett, “Communi-

cations Authentication and Security using Public Key Encryption – A Design for Implementation.” (Oxford University

Programming Research Group MSc Thesis (1984).

Харьковский национальный

университет радиоэлектроники,

Акционерное общество

«Институт информационных технологий»,

Харьковский национальный

университет имени В.Н. Каразина

Поступила в редколлегию 10.10.2017

