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Introduction

The development in quantum computer creation caused the need to search for quantum-
resistant cryptographic algorithms and requirements formation for them. So NIST at the fall of 2017
announced a request for post-quantum algorithms search, including algorithms for asymmetric en-
cryption [2]. It is known, for practical application, algorithms have to satisfy the requirements of
resistance, performance and should be lightweight. During the work, optimization of a perspective
post-quantum encryption NTRU-like algorithm was carried out. The encryption scheme from stand-
ard ANSI X9.98-2010 [1] and NTRU Prime parameters [3] were used in implementation.

1. NTRU Prime cryptosystem

Parameters for key generation, encryption and decryption, their appointment and formulas are
specified in table 1 below. Then we describe formulas for keys generation, encryption and decryp-
tion according to [3].

Table 1
Denotation Appointment Formula
n Polynomial order. Determines the number of its coefficients. A prime num- n > max{3, 2t}
ber for which the polynomial x" —x -1 is irreducible.

R Field of polynomials Z[x] with modulus X" —x—1. Z[x]/ (x" —x-1)
R/3 Field of polynomials (Z / q)[x] with modulus X" —x —1. (Z 13)[x]/ (x" —x-1)
R/q Field of polynomials (Z / q)[x] with modulus X" —x—1. (Z/1g)[x]/ (x" —x-1)

p Smaller modulus. p=3

q Bigger modulus, a prime number, by which all coefficients of a polynomial q=>48t+3

R/Qq are reduced.

t The natural number, determines the number of non-zero elements of a poly- t>1

nomial.

k Security strength (level).

m Secret message. The number of 0, 1 and -1, is bigger or equal t. meR/3

e Encrypted message. eeR/q

g Random polynomial, that has 2N /3 non-zero elements. The number of 1 geR/3

and -1 is not necessarily equal.
The secret parameter used to calculate the public key.

f Random t -small element (polynomial) is a secret. f =@+3F)modq

feR/q

F Random t -small element (polynomial) that defines a private key FeR/3

h The sender's public key. Invertible elementin R/ (. h=3g/f eR/q

The length of h is equal to nflogz q_|.
r Blinding polynomial, random t -small element. reR/3
b Random sequence (salt) that pads the message (Length of b is defined by
security strength).
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Keys generation. By definition secret key is a polynomial f, f=(@+3F)modq, where
F € R /3, the number of non-zero elements || F |l;=2t , and corresponding public key is polynomial
h=3g/f eR/q,where geR/3.

For any secret key f and corresponding public key h define encryption and decryption func-
tions E, and Dy :

e=Ep(m,r)=(m+rh)ymodq, mreR/3, | r|j=2t, 1)
D¢ (e) =(ef (modg)mod3, ecR/q. (2

2. Experimental research of multiplying algorithms

Encryption and decryption algorithms use the multiplication functions of polynomials that have
big computational complexity, therefore we investigated various methods of calculating the product
first of all. The following methods were studied:

— Al — “School” method — it is provided for comparison and verification of the results cor-
rectness;

— A2 — Toom-Cook's algorithm. It is implemented according to the [3] recommendations.
Even without interpolation, time characteristics are worse than the rest of the algorithms;

— A3 - FFT, Fast Fourier transform (algorithm with pre-calculations). Time characteristics
approximately coincide with the time characteristics for the Toom-Cook's algorithm;

— A4 - Our algorithm that takes into account the special structure of a polynomial with coef-
ficients (0, -1, 1) for which numbers are given, using AV X2 commands;

— A5 - Algorithm A4, which uses 2 threads.

— A6 — Algorithm A4, which uses 4 threads.

The results of the experimental research for some parameters from NTRU Prime are shown in
Table 2 The first column defines the parameter number in the Table B Parameters [3].

Table 2

N Al A2 A3 Al A5 A6

439 403796 152191 143679 40179 26588 18436
457 451344 157148 147812 37692 26336 18492
461 459088 157196 148476 46116 29808 20212
461 459120 157064 148352 46188 27444 20008
467 471340 157100 148196 24852 17636 14556
463 462736 157196 148268 40900 24724 18864
463 462828 156972 148608 43312 28768 19700
463 462676 157164 148460 46788 30672 20220
479 494224 157144 148020 36664 22468 18096
479 494156 157204 148228 39408 26168 18236
491 519168 157096 148556 41048 25784 19084

Conclusions on the multiplication methods:

1. The usage of complex algorithms (A2, A3) that do not take into account special structure of
the polynomial with coefficients (-1, 0, 1) makes no sense.

2. The polynomial with coefficients (-1, 0, 1) is better to be specified using non-zero elements
indices (A4, A5, Ab).

3. The use of threads in case of modulus reduction on the multicore processor makes sense.

After completing the multiplication operation, we obtain the polynomial, coefficients of which
don’t exceed gq*n, and the polynomial degree is 2n—1. This polynomial must first be reduced by

modulus x" —x—1, after that we obtain the polynomial of n -degree, and then each of n coeffi-
cients are reduced by modulus g.
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3 Reducing by modulus x" — x -1 optimization

For reduction by modulus x" —x—1 it is sufficient to polynomial coefficients with indices
0...n—1 to add (subtract) corresponding coefficients with indices n...2n—2.
To simultaneously reduction the coefficients block using AV X2 operations.

4 Reducing by the modulus q — Barrett reduction optimization

To accelerate the method, the constants, which depend only on the values of n, g, are comput-

ed ones when setting parameters [9].
Barrett bk ,bc constants pre-calculation:

bk is chosen such that 2% > p*q; (3)

b = 2% /q is calculated.
For each polynomial coefficient h;, it must perform the following calculations:

hy = h; — ((h; *bc) >>bk)*q. 4)
To simultaneously reduction by modulus q the coefficients block using AV X2 operations.

5. Optimization of Blinding polynomial calculation algorithm

Blinding polynomial calculation is performed according to the Blinding Polynomial Generation
Method (BPGM) — Algorithm 18 [1]. The algorithm uses the index generation function (IGF) by
which the bit string (IGF state s ) creates, with the length minCallsR*Hlen (see Algorithm 20 [1]).
When implementing the creation function s, a constant part is formed that is used at each step of
the calculation of the hash. When forming a hash, AV X2 commands are used.

To optimize the calculation of polynomial coefficients in the first step, an array of coefficients
is formed fully. At the second step, the possibility of their application is checked. If necessary, the
bit string expands.

5.1. Optimization of IGF state s formation

For option 1, use of the hash function as proposed in the standard [1]. To optimize the imple-
mentation of the s creation function, a constant part is formed that is used at each step of the hash
value calculation. When forming a hash value, AV X2 commands are used.

For option 2, when implementing the s creation function, the initial string and its length are de-
fined as for option 1, but instead of multiple recalling of the hash function, the multiple encryption
function call for the SALSA-20 algorithm is used [7]. For the next step of encrypting, the result for
the previous step is selected. The number of steps compared to the algorithm for option 1 is reduced
due to the fact that the length of the initial state is longer than the length of the hash value.

For option 3, instead of the function for algorithm SALSA-20, the encryption function for the
SNOW-20 algorithm is used [4].

5.2. Coefficients calculation optimization

To optimize the calculation of the polynomial coefficients in the first step, a completely array
of coefficients is formed. At the second step, the possibility of their application is checked. If neces-
sary, the bit string is expanded.

Blinding polynomial is used for data encryption and decryption. The effect of various methods
of blinding polynomial formation is shown in table 3.

6. MGF algorithm optimization

The algorithm uses the minCallMask parameter (see Algorithm 19 [1]) to generate a bit string.
The bit string formation optimization is made due to the fact that the constant part is used at each
step of the hash calculation is calculated only once. When forming a hash, AVX2 commands are
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used. For fast conversion of a byte string into a polynomial, a pre-computed table is used, the entry
point of which is byte and each row includes 5 coefficients.

7. Encryption algorithm optimization

In the encryption algorithm 2 branches are executed in parallel. The first branch includes Steps
4-8 of the encryption algorithm (Algorithm 23 [1]). The second branch includes Steps 9-10 (Algo-
rithm 23 [1]). To implement parallel branches, the Open MP parallelization standard is used [8].

The encryption algorithm coincides with Algorithm 23 (ANSI X 9.98 [1]). Next, the notation is
used from Algorithm 23.

1. For strings M and sData, intersecting memory is used. This allows you to reduce the
amount of memory required by the message length and reduce the time it takes to copy the string
for encryption (Step 5 and Step 9).

2. To accelerate the formation of Mtrin (Step 8), the bit string is processed in portions of 3
bytes, which allows you to immediately get 8 polynomial coefficients. The case is handled correctly
when the length of the string is not multiple 3.

3. To exclude the need to convert a public key into a byte string (Step 9), it is stored in the con-
tainer in the form of a byte string and in the form of a polynomial.

4. For blinding polynomial generation (Step 10) a BPGM method is used, which optimization
will be described above (see 5).

5. To calculate r*h (Step 11), the multiplication function is used for one or multi-core proces-
sor according to the execution environment. The maximum number of cores that the function uses is
4,

6. Step 12 and Step 13 are executed as one step.

7. The polynomial generation to mask mask (Step 14 of Algorithm 19 [1]).

8. Steps 15-18 are executed as one step in which the modules are formed and the numbers of
values -1, 0, 1 are calculated, their correctness is checked and the ciphertext value is calculated.

9. The result is an array of bytes that we obtain by converting a polynomial into an array of
bytes according to the package algorithm. To optimize the latter, separate algorithms are developed,
depending on the bit length q.

8. Decryption algorithm optimization

The decryption algorithm is executed according to Algorithm 24 [1]. Next, the notations are
used from Algorithm 24.

1. Steps 1-3 are combined in one step. The multiplication algorithm A4—-A6 is used to multiply
polynomials depending on the number of processor cores. The number of non-zero elements of re-
ceived polynomial is counted simultaneously with its formation.

2. Steps 4-6 are combined in one step, that allows to form in one cycle a byte row to calculate
cOR4.

3. Step 7 optimization (see paragraph 6).

4. To optimize Step 8, the cycle is deployed to simultaneously receive 4 bytes of string.

5. Steps 9, 10, 11 are combined in one step. That allowed in one cycle to form a byte string.

6. Step 12 of the algorithm actually determines the message after the decryption. Further, the
“speculative” execution of the code that uses these data may be continued. The following steps can
be performed in parallel with the use of the obtained data. If in result of additional checks will be
obtained a negative result, the code execution after the use of decrypted data should be determined
to be invalid. In case of successful additional verification, the executed code is accepted as valid.
Additional checks include Steps 13-17.

7. For Step 13, you do not need to convert the public key into a byte string, it is stored in this
format.

8. Step 14 optimization to form a blinding polynomial (see paragraph 5).

9. Step 15 polynomials multiplying.
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9. Time rates of encryption and decryption functions

The results of the experimental research for some parameters from NTRU Prime are shown in
Table 3. The first column defines the parameter number in the Table B Parameters [3]. Number ring
from 0. Parameter Ne 64 (n=739, q=9829) is given for comparison with the data given in [3]. Pa-
rameter Ne74 (n=761, q=4591) is chosen for comparison with the data given in [5].

Table 3

Ne | N Q Encrypt Decrypt Decrypt
Hash | Salsa20 | Snow20 | Hash | Salsa20 | Snow20 | Decrypt | Check
0 | 439 | 6833 | 56364 | 40456 | 35408 | 81356 | 64280 | 60016 | 29048 | 28508
1 | 457 | 6037 | 62712 | 38200 | 33712 | 87948 | 61448 | 56868 | 30500 | 28496
4 | 467 | 3911 | 52340 | 32016 | 29252 72760 | 51528 | 48532 | 26908 | 23320
5 | 463 | 6529 | 64336 | 39124 | 35288 | 90484 | 63256 | 59072 | 32352 | 29220
6
8

463 | 6841 | 66240 | 40628 | 36268 94884 | 66448 | 61464 | 32336 | 30884
479 | 5689 | 62800 | 38396 | 34144 | 87748 | 61556 | 57320 31000 | 28360
9 | 479 | 6089 | 64444 | 39072 | 34796 90624 | 62596 | 58352 32168 | 28948
10 | 491 | 6287 | 67464 | 41304 | 36188 94220 | 65984 | 61500 31368 | 30600
15 | 503 | 2879 | 50460 | 30536 | 27844 | 87748 | 61556 | 47116 31000 | 28360
17 | 523 | 3331 | 54192 | 33112 | 30812 90624 | 62596 | 51224 | 32168 | 28948
64 | 739 | 9829 | 104916 | 61597 | 53876 145516 | 100152 | 93224 | 48636 | 46488
74 | 761 | 4591 | 73456 | 44120 | 40032 100140 | 71480 | 67728 37580 | 30920

For encryption and decryption operations, there are 3 modes for creating a random string to cre-
ate a blinding polynomial (hash, salsa20, snow20), see paragraph 5. For both functions, we get the
best results for the last mode.

The last 2 columns determine the time taken to decrypt and verify the decryption correctness. In
the case of parallel execution of the verification operation with other encryption-decryption opera-
tions, you can balance the time required for encryption and decryption.

The last row in the table specifies the results obtained for the parameters specified in [5]. These
parameters correspond to a cryptographic stability of more than 200.

Authors [5] received the results:

Encryption: 59600 and decryption 97452 cycles respectively.

In the case of the hash value using, our encryption operation implementation loses the specified
ones in the by 25%, and the decryption operation — 5%. When using SNOW 2.0, our implementa-
tion wins 30% for encryption algorithm and 29% for decryption algorithm.

In [6] — one of the algorithms submitted to the competition (Kyber), the following performance
data after optimization using AV X2 are given:

Encryption — 119652;

Decryption — 125736.

Compared to our results for the best option, we get the winning: 65% for encryption and 44%
for decryption.

Conclusions

According to the results of the work we can made the following conclusions:

1. During optimization great attention was paid to multiplication operation, as it is the most
time consuming. Usage of complex multiplying algorithms, which don’t take into account special
polynomial structure with coefficients (-1, 0, 1) doesn’t make sense. The polynomial with coeffi-
cients (-1, 0, 1) is better to be specified using non-zero elements indices. The use of threads in case
of reduction by modulus on the multi-core processor makes sense. Usage of AV X2 operations for

reduction by modulus polynomial x" —x—1 and prime ¢ and for Barrett algorithm for reduction by
modulus q are effective and accelerates multiplication speed.
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2. Blinding polynomial generation, coefficient calculation, blinding polynomial generation and
index generation function optimizations were also made.

3. Encryption and decryption algorithms were optimized due to the parallel computing.

4. Three algorithms of blinding polynomial formation were studied (hash, salsa20, snow20),
the best time rates were obtained for Snow 2.0.

5. In case of usage encryption algorithms our implementation wins 30 % for encryption algo-
rithm and 29 % for decryption algorithm.

6. Compared to the data given in [6], we have got the winning: 65 % for encryption and 44%
for decryption.
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