ЭЛЕКТРОДИНАМИКА, АНТЕННЫ И УСТРОЙСТВА МИКРОВОЛНОВОЙ ТЕХНИКИ

УДК 621.396.67.012.12

Я.Н. ЧЕПУРНЫЙ, Л.Я. ЕМЕЛЬЯНОВ, канд. физ.-мат. наук, Д.А. ИСКРА

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК АНТЕННЫ РАДАРА НЕКОГЕРЕНТНОГО РАССЕЯНИЯ ПО ОТРАЖЕНИЯМ ОТ КАТАЛОГИЗИРОВАННЫХ ТЕХНОГЕННЫХ КОСМИЧЕСКИХ ОБЪЕКТОВ

Введение

Антенны радаров некогерентного рассеяния (HP) характеризуются высокой направленностью, большой эффективной площадью и, соответственно, габаритами. В метровом диапазоне радиоволн диаметр рефлектора зеркальных антенн составляет от 25 до 100 м и более. Измерение экспериментальных характеристик таких антенн является сложной задачей, если антенна неподвижна и конструкцией не предусмотрена возможность отклонения ее диаграммы направленности (ДН). В этом случае используется либо очень дорогостоящий метод облета антенны специально оборудованным самолетом, либо радиоастрономический метод, основанный на наблюдении прохождения через ДН антенны внеземных радиоисточников (Кассиопея А, Лебедь А и др.). В последнем случае может быть получено одно сечение ДН – в плоскости географической параллели.

Используется также косвенный метод определения ДH — по измеренным токам на поверхности зеркала [1]. Метод измерения ДH на уменьшенных масштабных моделях применяется, как правило, на этапе разработки антенны и не учитывает технического состояния реальной антенны.

Известны случаи, когда неподвижные антенны радаров HP специально проектировались с наклонным расположением ДН — в направлении, соответствующем прохождению определенного радиоисточника через географический меридиан в месте расположения антенны. Так, первая антенна харьковского радара HP (НПА-30, параболическая, диаметром 30 м) имела отклонение ДН от зенита на 9° к северу (направление на Кассиопею А в момент ее верхней кульминации) [2]. Известная 67-метровая антенна радара НР в Милстон-Хилле имеет отклонение ДН от зенита на 2° [3]. Учитывая географическую широту расположения радара, легко определить, что она направлена на радиоисточник Лебедь А.

Антенна НДА-100 радара Института ионосферы является неподвижной двухзеркальной антенной с ДН, ориентированной в зенит. Главное зеркало антенны в плане представляет собой правильный восьмиугольник, описанный вокруг окружности диаметром $100 \, \text{м}$. При рабочей длине волны $\lambda = 1.9 \, \text{м}$ расстояние до дальней зоны ДН (минимальная высота самолета при облете для корректного определения ДН) составляет более $10 \, \text{км}$. При строительстве НДА-100 планировалось измерение ее ДН с помощью облета, однако по различным причинам это сделано не было. В настоящее время применение метода облета ДН является экономически сложно выполнимым.

Применение радиоастрономического метода в данном случае также затруднено. Наиболее близким к зениту (на географической широте радара) является радиоисточник 147^b по Третьему Кембриджскому каталогу [4]. Отклонение радиоисточника от зенита составляет 0.15°, что является заметным при ширине ДН антенны около 1°. Кроме того, этот источник на два порядка слабее, чем Кассиопея А или Лебедь А, что не позволяет оценить уровень боковых лепестков ДН.

Между тем, в процессе проведения измерений ионосферных параметров на радаре HP периодически наблюдаются отражения от объектов космического мусора и действующих искусственных спутников Земли, находящихся на низких околоземных орбитах. Часть из них каталогизирована, и для таких космических объектов (КО) заранее могут быть определены время и направление пересечения ДН антенны радара HP, в том числе через максимум ее главного лепестка.

Цель работы – оценка возможности использования отражений от техногенных космических объектов для измерения ДН антенны радара НР и определения ряда ее технических характеристик.

Методика проведения измерений ДН по отражениям от космических объектов

Возможность реализации рассматриваемой методики появилась после внедрения на радаре HP оцифровки принятых сигналов на протяжении множества радиолокационных разверток дальности в режиме реального времени с последующей записью. При частоте повторения зондирующих импульсов $24.4~\Gamma \mu$ за время прохождения объекта, в зависимости от высоты его орбиты, фиксируется от 70 до 800 отсчетов напряжения отраженного сигнала, что обеспечивает достаточную угловую точность определения ДН.

Для радара HP с ориентированной в зенит антенной НДА-100 предлагаемая методика включает в себя следующую последовательность действий:

- 1) определение точных географических координат антенны;
- 2) определение по каталогу космических объектов, проходящих за период проведения ионосферных измерений через зенит для географических координат антенны;
- 3) определение по каталогу точного расстояния до объекта в момент прохождения им зенита;
 - 4) наблюдение и запись прохождения КО через ДН антенны;
- 5) пересчет времени наблюдения отражений от конкретного КО в угловые характеристики ДН;
- 6) построение измеренного сечения ДН в плоскости орбиты КО и определение характеристик антенны.

Определение географических координат антенны может быть проведено на основе общедоступных карт и космических снимков местности с точностью не хуже 0.0001°.

В настоящее время существуют достаточно подробные каталоги КО, позволяющие определить с точностью до секунды время их прохождения через ДН, направление движения и дальность до объекта в момент прохождения над антенной [5]. По каталогу выбираются объекты с орбитами, близкими к круговым, пересекающие ДН антенны через максимум ее главного лепестка. При этом известными являются время прохождения и высота орбиты h объекта в момент пересечения ДН. По известной высоте орбиты определяется скорость КО V и период его обращения T вокруг Земли в предположении невозмущенной круговой орбиты [6]:

$$V = \sqrt{\frac{\mu_0}{R}} , \qquad (1)$$

$$T = 2\pi R/V, \qquad (2)$$

где $\mu_0 = 3.98602 \times 10^{14} \ m^3/c^2$ – гравитационный параметр Земли, R – радиус орбиты объекта, отсчитываемый от центра Земли.

Далее из соотношения наблюдаемого времени прохождения объекта $t_{\rm пp}$ через ДН и периода обращения T можно определить центральный угол α , показанный на рис. 1

$$\alpha = \frac{t_{\rm np}}{T} 360^{\circ} \,. \tag{3}$$

Из геометрических соотношений (см. рис. 1) можно найти угол ДН 2 θ ($\angle BAC$), связанный с центральным углом α :

$$2\theta = 2\arctan\left(\frac{R_3 + h}{h} \operatorname{tg} \frac{\alpha}{2}\right),\tag{4}$$

где h = AM — высота орбиты КО над поверхностью Земли, $R_3 = 6371 \ \kappa M$ — радиус Земли.

Указанным способом время наблюдения КО пересчитывается в угол ДН. Таким образом, шаг отсчетов ДН по углу индивидуален для каждого наблюдения и определяется высотой орбиты КО. В приведенных ниже результатах наблюдений шаг отсчетов по углу изменялся в пределах от 0.0144° (для SL-8 R/B) до 0.033° (для Cosmos 1340).

Экспериментальные результаты

На рис. 2 схематически представлена ориентация антенны НДА-100 (вид сверху) относительно сторон света, а также нанесены траектории некоторых объектов, пересекавших ДН антенны в 2013 г.

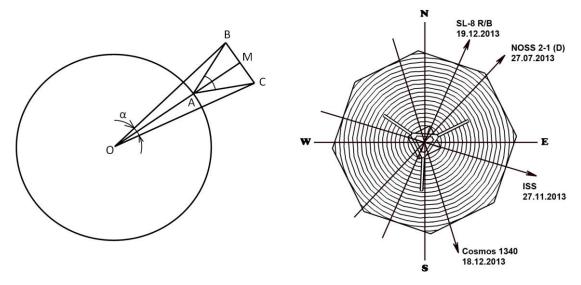


Рис. 1. К определению центрального угла α

Рис. 2. Ориентация антенны НДА-100 и траектории некоторых космических объектов

Сигналы отражений от КО проходят через антенно-фидерный тракт дважды — первый раз на передачу, второй — на прием. Поэтому, измеренные зависимости соответствуют ДН антенны по мощности, что учитывается при использовании логарифмического масштаба.

Поскольку мощность отражений от КО превышает мощность HP-сигнала на порядок и более, в большинстве случаев происходит его ограничение аналого-цифровым преобразователем (АЦП) аппаратуры обработки. Для исключения ограничения главного лепестка ДН в специально выделенный канал радиоприемного устройства был введен дополнительный аттенюатор. Боковые лепестки ДН хорошо прослеживаются по основному каналу, работающему без аттенюатора. Измеренные ДН «сшиваются» по уровню $-10...-15\ \partial E$.

На рис. 3-6 приведены измеренные сечения ДН антенны НДА-100, полученные по отражениям от некоторых КО. Плоскости орбит КО определяют сечения ДН соответствующими азимутальными плоскостями ϕ (угол ϕ отсчитывается к востоку от направления на север до линии входа КО в ДН антенны).

Следует отметить, что уровень отраженного сигнала зависит как от высоты орбиты КО, так и от его геометрических размеров. Так, например, в момент пересечения ДН антенны высота спутника Cosmos 1340 (см. рис. 6) составляла 539 κ м, а КО SL-8 R/B (см. рис. 4) — 1180 κ м. В последнем случае отраженный сигнал был значительно слабее и в области боковых лепестков лишь немного превышал шумы приемной системы. Тем не менее, полученные экспериментальные результаты дают представление о форме главного и первых боковых

лепестков ДН антенны.

Обращает на себя внимание несимметричный характер ДН в области первых боковых лепестков. Это можно объяснить сложной конструкцией элементов антенны, влияющих на амплитудное и фазовое распределение поля в ее апертуре:

- облучателем является пирамидальный рупор с квадратным раскрывом;
- малое гиперболическое зеркало поддерживается с помощью трех ферм, одна из которых лежит в E-плоскости облучателя;
 - в плане малое зеркало представляет собой круг с тремя вырезами под несущие фермы;
 - главное зеркало в плане имеет форму правильного восьмиугольника.

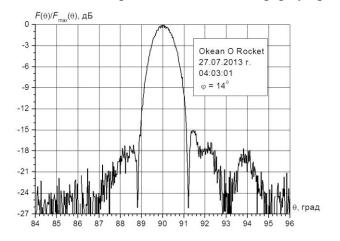
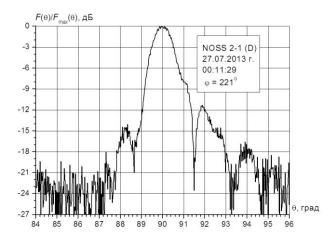



Рис. 3. ДН антенны в плоскости $\phi = 14^{\circ}$

Рис. 4. ДН антенны в плоскости $\phi = 187^{\circ}$

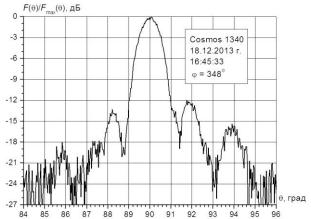


Рис. 5. ДН антенны в плоскости $\phi = 221^{\circ}$

Рис. 6. ДН антенны в плоскости $\phi = 348^{\circ}$

Большие электрические размеры антенны (диаметр более 52λ) обусловливают малую ширину боковых лепестков (около 2°) и, следовательно, большое их количество в верхней полусфере. Поэтому возможны значительные изменения формы и уровня боковых лепестков при изменении азимутальной плоскости сечения ϕ всего на несколько градусов. Результаты измерений характеристик ДН антенны приведены в таблице.

Видно, что в различных сечениях ширина ДН по половинной мощности $2\theta_{0.5P}$ находится в пределах $1.1^{\circ}-1.2^{\circ}$, ширина ДН по уровню первых нулей — от 2.4° до 2.85° . Несимметричность ДН в плоскости $\phi = 221^{\circ}$ (см. рис. 5) в области главного и 1-го бокового лепестка объясняется влиянием фермы, поддерживающей малое зеркало и лежащей в E-плоскости рупорного облучателя антенны.

Уровень 1-го бокового лепестка ДН изменяется от -15 до -11.3 ∂E , 2-го - от -20.3 до -14.7 ∂E .

Таким образом, практическая реализация описанной выше методики позволила впервые получить ряд азимутальных сечений ДН крупногабаритной неподвижной антенны зенитной ориентации, определить ширину и форму главного лепестка ДН, а также уровень 1-го и 2-го боковых лепестков в этих сечениях.

Характеристики ДН антенны НДА-100, измеренные по отражениям от техногенных КО

№ π/π	Наименование КО, дата и время наблюдения	Азимут траектории КО ф, <i>град</i>	Ширина ДН 200, град	Ширина ДН 20 _{0.5P} , град	Уровень 1-го бокового лепестка, дБ	Уровень 2-го бокового лепестка, <i>дБ</i>
1	NOSS 2-1 (D) 27.07.2013 г. 00:10:59	221	2.85	1.1	-11.3	-16.7
2	Okean O Rocket 27.07.2013 г. 04:03:01	14	2.4	1.1	-15.0	-17.6
3	Соsmos 1340 18.12.2013 г. 16:45:33	348	2.6	1.1	-12.0	-14.7
4	DMSP 5D-2 F13 19.12.2013 г. 16:39:52	163	2.5	1.2	-14.5	-17.1
5	SL-08 R/B 19.12.2013 г. 18:27:32	187	2.6	1.15	-11.7	-20.3

Выводы

Предложенная методика позволяет проводить измерения ДН антенны радара НР одновременно с определением ионосферных параметров. Достоинством предлагаемой методики является возможность измерения различных сечений ДН. При этом плоскость сечения ДН определяется траекторией космического объекта в момент его прохождения над антенной. Проведенные измерения позволили впервые экспериментально определить ряд характеристик ДН антенны НДА-100 (форму и ширину главного лепестка по половинной мощности и первым нулям, уровни 1-го и 2-го боковых лепестков в различных азимутальных сечениях).

Список литературы: 1. Гукасов, Ю.Г., Ивченко, В.Н. Измерение диаграмм направленности антенны НДА-100 по токам на поверхности зеркала // Вестн. Харьк. политехн. ин-та. Исследование ионосферы методом некогерентного рассеяния. Вып. 1. − 1979, №155. − С. 29 − 33. 2. Андренко, С.Д., Соляник, О.А., Булгаков, В.И. Параболическая антенна диаметром 30 м // Радиотехника. − Харьков : ХГУ, 1971. Вып. 16. − С. 74 − 76. 3. Armistead, G.W., Evans, J.V., and Reid, W.A. Measurements of D- and E-region electron densities by the incoherent scatter technique at Millstone Hill // Radio Science. − 1972. − Vol. 7, No. 1, P. 153−162. 4. Краус, Дж.Д. Радиоастрономия ; пер. с англ. под ред. Железнякова В.В. − М. : Сов. радио, 1973. − 456 с. 5. The DNA Ancestry Project [Электронный ресурс] / Developed and maintained by Chris Peat, Неаvens-Аbove GmbH-URL http://www.heavens-above.com (дата обращения 25.03.2014). 6. Инженерный справочник по космической технике. Изд. 2-е, перераб. и доп. ; под ред. А.В. Соловьева. — М. : Воениздат, 1977. − 430 с.

Институт ионосферы НАН и МОН Украины

Поступила в редколлегию 12.08.2014