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Introduction 

Today the questions concerning the stability of existing cryptographic algorithms to quantum 
cryptanalysis become topical. This is due, first of all, to the rapid development in the field of quan-
tum computers. Therefore, it is necessary to evaluate the possibilities of quantum cryptanalysis and, 
on this basis, to modify existing cryptographic algorithms (for example, to increase the size of key 
parameters) or to create new cryptographic algorithms that will be resistant to attacks on quantum 
computers. 

So, in light of the foregoing, NIST USA has announced a competition for the post-quantum al-
gorithms search, including end-to-end encryption algorithms (E2EE) [7]. It is definitely known that 
for practical application algorithms must meet the requirements of stability, performance and should 
be low-resource. Submissions were received by NIST until November 30, 2017. They relate to: 
E2EE asymmetric algorithms and electronic signature (ES). Subsequently, their detailed analysis 
and comparison is expected, with a period of up to 3 years. This indicates the significant complexity 
of the problem to be solved. 

With the participation of the authors of this article for the NIST USA competition, a crypto-
graphic algorithm for NTRU Prime IIT Ukraine [8, 9], developed using NTRU [1] and NTRU 
Prime [2], was presented. 

This article describes the differences between the proposed cryptographic algorithm and ANSI 
standard [1] and the NTRUPrime algorithm [2]. In each paragraph, attention is paid to the differ-
ence, the possibility of optimization, and the results of the research. 

All experiments to determine the computational complexity were performed on the Intel(R) 
Core(TM) processor i5-4440 CPU @ 3.10 GHz. The spent time is determined in the processor tacts. 

The objective of this paper is a general overview and description of the proposed cryptographic 
transformation end-to-end encryption «NTRU Prime IIT Ukraine», implementation specificity, 
comparison of the main characteristics and indicators, as well as the definition of differences from 
existing NTRU-like cryptographic algorithms. 

1. Denotations and abbreviations 

Most of the terms and denotations are the same as those adopted in the ANSI [1]. For conven-
ience, we give them in this document. 

Table 1 
Denotations and abbreviations, that are used 

db 
The number of bits for the random component that is used during encryption. It is determined by 
cryptostability. Coincides with the length of the used hash. 

n 
Polynomial order. It determines the number of its coefficients. Prime for which the polynomial   
x

n
–x–1 is irreducible. 

q The module, prime, by which the polynomial coefficients are given in (Z/qz)[X](x
n
–x–1); q≥48t+3. 

F Polynomial in (Z/3z)[X](x
n
–x–1). Specifies the private key. 

G Polynomial in (Z/3z)[X](x
n
–x–1). It is used to calculate the public key. 

R Blinding polynomial in (Z/3z)[X](x
n
–x–1). 

f Polynomial, which is calculated using the formula: f=3F+1. 

h Polynomial in (Z/qz)[X](x
n
–x–1). Calculated by the formula h=3G/f. 

t 
It determines the number of non-zero elements in the private key and message. For F, the number 
of 1 and -1 is 2t, for G the number of 1 is n/3+1, and the number of -1 is n/3, for r –  the number of 
1 and -1 is n/3, for message the number of 0, 1 and -1 is not less than t. 
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Continuation of Table 1 

Q The module, prime, by which the polynomial coefficients are given in (Z/qz)[X](x
n
–x–1); q≥48t+3. 

pE  Encrypted message, the polynomial in  (Z/qz)[X](x
n
–x–1). 

bE  Encrypted message, bytes string. 

Hlen The length of the hash (bit) coincides with db. 

k Security Level. 

m Message to encrypt, bytes string. 

M 
Message after addition the random string and other information. It is used to encryption and de-

cryption. 

MGF Mask generation function 

qBits Number of bits to specify the number q. 

maxMsgLenBytes Maximum length of the message. 

 

2. Basic and additional parameters 

2.1 Basic parameters 

k – Security level. It is defines the remaining parameters. In [2], this parameter is indicated by 

λ. 

n –polynomial order. It determines the number of its coefficients. The prime for which the 

polynomial x
n
–x–1 is irreducible. In [2], this parameter is indicated by p. 

t – determines the number of non-zero elements in a private key and message. For F, the num-

ber of 1 and –1 is 2t, for G the number of 1 and –1 are 2n/3+1, and the number of –1 is n/3, for r – 

the number of 1 and –1 is n/3, for message the number of 0, 1 and –1 is not less than t. 

q – the module in calculating the coefficients of the polynomial in (Z/qz)[X](x
n
–x–1). A prime 

number that satisfies the condition q≥48t+3. 

Further, as parameters (n, q, t) are selected parameters from [2]. 

Exceptions: 

1. According to the requirement of no decoding errors, parameters q, t must satisfy the re-

quirement q≥48t+3. According to [2] these parameters satisfied the requirement q≥48t+3. Due to 

the change in requirement, some values of the q parameter have been changed. The parameters that 

have been changed are shown in the Table 2. The first column defines the parameter numbers in the 

Table B Parameters [2]. Numbering from 0. 

Table 2 

Values of changed parameters 

№ 
It was It has become 

n Q T n q t 

5 463 6481 135 463 6529 135 

29 587 5233 109 587 5237 109 

87 823 4513 94 823 4519 94 

97 881 3217 67 881 3221 67 

 

2. For some parameters from [2], the values of 3t are approximately equal to n. The use of such 

parameters during encryption leads to the need for repeated execution of the encryption operation 

with various random data that is supplemented the message. This is due to the fact that the probabil-

ity of obtaining a polynomial in which the number of 1, –1, 0 does not satisfy the requirement to 

remain at least t is quite large. Repeated execution of the encryption operation greatly increases the 

time of its execution. 

In Table 3 are the values of parameters that are not recommended for use on this basis. The 

first column defines the parameter numbers in the Table B Parameters [2]. Numbering from 0. 
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Table 3 

Values of parameters that are not recommended for use 

№ N Q t 3t n–3t 

2 461 7607 153 459 2 

3 461 8779 153 459 2 

7 463 9371 154 462 1 

11 491 8627 163 489 2 

12 491 9277 163 489 2 

13 499 8243 166 498 2 

14 499 9029 166 498 2 

16 503 8663 167 501 2 

24 557 9323 185 555 2 

32 599 9551 198 594 4 

2.2 Additional parameters 

qBits – number of bits for q, 2logqBits q    . It is used by functions of transforming a poly-

nomial in (Z/qz)[X](x
n
–x–1) to the byte string, if the same number of bytes is used for each element. 

If you use a method of minimizing the key length, the parameter is not used. 

db – the number of bits for the random component. It is calculated by the formula: 

128 128

192 192

256 256

k

db k

k




 
 

        

For k>200  db=256. 

maxMsgLenBytes – determines the message maximum length. It is determined by the polyno-

mial with small coefficients length. In encoding 2 polynomial coefficients are replaced by the bit 

string of 3 bits long. Thus, the total length of the bit string is (n–1)/2*3/8 bytes. This string should 

contain a random component in the length of db/8 bytes, the message length is 1 byte and the mes-

sage itself. That is, the message maximum length is calculated by the formula 

maxMsgLenBytes=(n–1)/2*3/8–db/8–1;      

bc, bk are constants for calculating the module by the Barret method; 

c – the number of bits used to determine the polynomial non-zero element index (see IGF2 

[1]). It is determined by n: 

9 512

10 1024

11 1024

n

c n

n




 
 

        

dm0 – determines the number of non-zero elements in the encoded polynomial dm0=t; 

Hlen – hash length 

160 112

256 112

k
Hlen

k


 


       

minCallsMask – determines the number of the hash function calls for the algorithm (MGF_TP-

1). It is determined by the formula: 

minCallsMask=(16*n+HashLenBits*5–1)/(HashLenBits*5)+1;    

minCallsR – determines the number of the hash function calls for the algorithm (IGF-2). It is 

determined by the formula: minCallsR=(t*4*c+HashLenBits)/HashLenBits; 



 ІSSN 0485-8972 Радиотехника. 2018. Вып. 193 8 

pkLen – the number of public key bits that are used to form the string for encryption; 

pkLen=db 

OID – 3 байта, OID[0]=0; OID[1]=1; OID[2]=2;     

3. Key generation  

3.1 Key data 

Private key consists of: 

Polynomial G in (Z/3z)[X](x
n
–x–1), the number of non-zero elements is equal to 2n/3+1; 

Polynomial F in (Z/3z)[X](x
n
–x–1), the number of non-zero elements is equal to 2t/3; 

Polynomial f=3F+1 in (Z/qz)[X](x
n
–x–1); 

Polynomial f
-1

 in (Z/qz)[X](x
n
–x–1); 

Public key – polynomial h in (Z/qz)[X](x
n
–x–1). 

3.2 Polynomial with a given number of nonzero elements generation algorithm 

Small polynomial Generation (SmallPolynomialGeneration)  

Component The parameters n 

Input  Not zero items count count, random numbers generator rand 

Output the polynomial dest of degree n–1 

The Small polynomial Generation function shall be computed by the following or an equiva-

lent sequence of steps; 

Set dest := 0 

Set i := 0 

While i <count do 

a. Set ind := rand() % n 

b. If dest [ind] = 0   

i. Set value:=rand()%2  

ii. If value == 0 

1. value = -1 

iii. dest [ind] =value 

c. Set i:=i + 1 

Output dest 

3.3 Key generation algorithm 

Algorithm 1 Random key generation primitive 

Component The parameters n, t, q 

Input  Small polynomial Generation Function (Small polynomial Generation) 

Output Polynomial F, Polynomial h. 

The Random key generation shall be computed by the following or an equivalent sequence of 

steps; 

1 Set count := 2n/3+1 

2 Call  SmallPolynomialGeneration(count) for computer the polynomial G 

3 Set count := 2t 

4 Call  SmallPolynomialGeneration(count) for computer the polynomial F 

5 Compute the polynomial f=3F+1 in (Z/qz)[X](x
n
–x–1) 

6 Compute the polynomial f
-1

= such as f
-1

*f=f*f
-1

=1 in (Z/qz)[X](x
n
–x–1). If f

-1 
not exist go 

to step 4 

7 Compute the polynomial h = 3gf
-1

 in (Z/qz)[X](x
n
–x–1) 

Output F, h 

 

 

 



ISSN 0485-8972 Радиотехника. 2018. Вып. 193 9 

The inversion calculation is performed using the extended Euclidean algorithm. When calculat-

ing the inversion for the standard NTRU [1], the value q (module for polynomial coefficients) was 

2048. This made it possible to first calculate the inverse by the module 2, and then use it to calcu-

late the inversion by modules 4, 16, 256, 65536, and then go to module 2048. This made it possible 

to significantly reduce computing costs compared with the use of the extended Euclidean algorithm 

[6]. Unfortunately, in NTRUPrime mathematics, q is a large prime number, so the authors did not 

find a way to gradually calculate the inversion. 

To reduce the computational complexity of the algorithm, the following techniques were used: 

AVX operations were used to perform all operations on polynomials; 

The Barrett method was used to calculate the module; 

Only positive coefficients were used in the calculation, the transition to the value in the range  

[–q/2, q/2] was performed after the final calculation of the inversion. 

For further optimization, you can simultaneously form Small Polynomials F, G, but their for-

mation time is no more than 5% relative to the inversion calculation function, so this optimization is 

not used. 

Time characteristics of the key generating function for some NTRUPrime parameters are given 

in Table 4. The first and 5 columns define the parameter numbers in the Table B Parameters [2]. 

Numbering from 0. Parameter № 64 (n=739, q=9829) is given for comparison with the data given 

in [2]. Parameter №74 (n=761, q=4591) is chosen for comparison with the data given in [3]. 

                                                                                                                       Table 4 

Time characteristics of the key generating function for some NTRUPrime parameters 

№ N Q KeyGenerations (tacts) № N Q KeyGenerations (tacts) 

        

0 439 6833 17542928 9 479 6089 17317560 

1 457 6037 16663192 10 491 6287 17758164 

4 467 3911 14472788 15 503 2879 14384316 

5 463 6529 17583180 17 523 3331 15206436 

6 463 6841 17779208 64 739 9829 29850996 

8 479 5689 16777688 74 761 4591 24910804 
 

The maximum time for parameter generation is 38976232, the minimum – 14472788 processor 

tacts for the last parameter and parameter 4 from the parameter table [2]. 

4. Algorithms for converting polynomials into an array of bytes and vice versa 

4.1 Converting a polynomial (Z/3z)[X](x
n
–x–1) into an array of bytes (package) 

The algorithm is used to encode a private key. 

The coding table for the polynomial coefficients is given (Table 5). 

                                                                                           Table 5 

Coding table 

Code Coefficients Code Coefficients Code Coefficients 

00000 -1, -1, -1 01001 -1, -1, 0 10010 -1, -1, 1 

00001 0, -1, -1 01010 0, -1, 0 10011 0, -1, 1 

00010 1, -1, -1 01011 1, -1, 0 10100 1, -1, 1 

00011 -1, 0, -1 01100 -1, 0, 0 10101 -1, 0, 1 

00100 0,  0, -1 01101 0,  0, 0 10110 0,  0, 1 

00101 1, 0, -1 01110 1, 0, 0 10111 1, 0, 1 

00110 -1, 1, -1 01111 -1, 1, 0 11000 -1, 1, 1 

00111 0. 1, -1 10000 0. 1, 0 11001 0. 1, 1 

01000 1, 1, -1 10001 1, 1, 0 11010 1, 1, 1 
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To assign 3 polynomial coefficients, it is enough to use 5 bits. Table 5 specifies codes for all 

variations of the coefficients. The row number of the table specifies the code (5 bits), which en-

codes 3 consecutive polynomial coefficients, starting with the coefficient with a smaller number. 

4.2 Converting a polynomial (Z/qz)[X](x
n
–x–1) into an array of bytes and vice versa 

The algorithm is used for public keys and encryption results. 

The objective is to allocate for the public key and the encryption result minimum of memory to 

allow storage its on a device with a small memory. 

If in the standard q=2048 for all parameters, then for the new algorithm the value q>=48t+3 

and the prime number (2t is the number of polynomial non-zero coefficients). 

2 methods of packing q. 

1 method. Calculate the minimum Q=2
k
>q. In packing for each polynomial element take k bits. 

Advantage – simple packaging-unpacking operation. 

Disadvantages: 

the public key size can be reduced; 

the k value is different for different q, that is, the packaging-unpacking procedures depend on q. 

2 method. Set a polynomial as a large number in the q system. That is, to calculate the polyno-

mial value: 

h0+h1*q+h2*q
2
+…+hn-1*q

n-1
.       

Advantages: 

public key takes a minimum of memory; 

packing (calculating the polynomial value – the Gorner scheme)–unpacking (the definition of 

the number "digits" in a given numbers system) procedures do not depend on q. 

q – this is the algorithm parameter, that is, the values q
i
 for i=2…n–1 can be calculated once, 

this will greatly accelerate both the packing algorithm and the unpacking algorithm. 

Disadvantage: We must use arithmetic of long numbers. 

Unpacking – the operation is inversely related to the selected packaging option. 

Table 6 shows the values of the public key lengths when using the first and second methods, as 

well as the time (the number of processor tacts) for key unpacking for some parameters of NTRU 

Prime. The first column defines the parameter number in the Table B Parameters [2]. Numbering 

from 0. Parameter № 64 (n=739, q=9829) is given for comparison with the data given in [2]. Pa-

rameter №74 (n=761, q=4591) is chosen for comparison with the data given in [3]. 

                                                                                                                        Table 6 

Public Key. The dependence of the length and time for the unpacking  

operation depending on the method 

№   Lengths (Bits)  Time (tacts) 

 N Q Len1 Len2 Δ (%) Pack1 Unpack1 Pack2 Unpack2 

0 439 6833 5707 5593 2 3100 3154 1685683 8263155 

1 457 6037 5941 5740 4 1356 1380 750852 3706680 

4 467 3911 5604 5573 1 1055 1076 701441 3506980 

5 463 6529 6019 5868 3 1273 1310 727928 3679286 

6 463 6841 6019 5899 2 1270 1288 732257 3692521 

8 479 5689 6227 5976 4 1297 1315 767563 3899634 

9 479 6089 6227 6022 3 1300 1318 772980 3902594 

10 491 6287 6383 6196 3 1358 1376 812741 4107416 

15 503 2879 6036 5781 4 1122 1140 780414 3946185 

17 523 3331 6036 5886 3 1119 1137 793815 3998625 

64 739 9829 10346 9802 6 1902 1920 1880312 9626583 

74 761 4591 9893 9258 7 2044 2063 1832085 9494444 
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Conclusions: 
1. The length for the second method is less than the length for the first method, not more than 

8 %. 
2. The packing-unpacking time for option 1 is much less than the time of the corresponding 

operation for the second option. The transformation time for the second option is even greater than 
the time for encryption and decryption operations. 

Developers recommendation: use the first option. 

5. Polynomials multiplication operation 

The multiplication operation is performed during encryption (one operation) and decryption (2 

operations). It is this operation that takes most time among the remaining operations, so its optimi-

zation is paying much attention. 

All multiplication operations are performed for polynomials (Z/3z)[X](x
n
–x–1) and 

(Z/qz)[X](x
n
–x–1) with each other. As a result, we obtain a polynomial (Z/qz)[X](x

n
–x–1). The mul-

tiplication on the polynomial f=3F+1 (decryption operation) can easily be replaced by the multipli-

cation operation by F. Really, f*h=(3F+1)*h=3*F*h+h. After calculating F*h multiplication by 3 

and adding h are performed very quickly due to the use of AVX operations. As our researches have 

shown, it is more efficient than calculating directly f*h. Therefore, the polynomial multiplication 

operation with (Z/3z)[X](x
n
–x–1) on the polynomial (Z/qz)[X](x

n
–x–1) is considered below. 

To optimize the multiplication operation, the following was investigated: 

 method of specifying the polynomial in (Z/3z)[X](x
n
–x–1), 

 different multiplication algorithms. 

5.1. Method of specifying the polynomial in (Z/3z)[X](x
n
–x–1) 

The polynomial after unpacking has coefficients 0, 1, –1. To specify, you can use an array in 

which to specify all coefficients, or numbers arrays that have values 1 and –1. When performing a 

multiplication operation, the most significant coefficients are significant, so the second method of 

assignment is more accepted. 

5.2. Different multiplication algorithms 

We have investigated all multiplication methods that are recommended in [2, 3] and other 

methods. When implementing various methods, minimization of transition operations was per-

formed and the properties of the modern processors cache were taken into account. The possibilities 

of using parallel computations through the use of AVX operations and multi-core processors were 

explored. 

The multiplication result must be reduced by modulus q (prime number) and by modulus of 

polynomial x
n
–x–1. As our studies have shown for the reduction by modulus q to use the Barrett re-

duction method is most effectively [5]. 

For reduced by modulus x
n
–x–1, polynomial x

n
–x–1 properties are used. 

The following is a summary of the various multiplication and calculating modules methods. 

5.2.1. Experimental research of multiplication algorithms 

The following methods were studied: 

– A1 – "School" method – it is provided for comparison and verification of the results cor-

rectness; 

– A2 – Toom-Cook's algorithm. It is implemented according to the [2, 3] recommendations. 

Even without interpolation, time characteristics are worse than the rest of the algorithms; 

– A3 – FFT, Fast Fourier transform (algorithm with pre-calculations). Time characteristics 

approximately coincide with the time characteristics for the Toom-Cook's algorithm; 

– A4 – Our algorithm that takes into account the special structure of a polynomial with coef-

ficients (0, –1, 1) for which numbers are given, using AVX commands; 

– A5 – Algorithm A4, which uses 2 threads. 
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– A6 – Algorithm A4, which uses 4 threads. 

The results of the experimental research for some parameters from NTRU Prime are shown in 

Table 7. The first column defines the parameter number in the Table B Parameters [2]. Numbering 

from 0. Parameter № 64 (n=739, q=9829) is given for comparison with the data given in [2]. Pa-

rameter №74 (n=761, q=4591) is chosen for comparison with the data given in [3]. 
 

Table 7 

Polynomials multiplying algorithms. Time indicators 

№ N A1 A2 A3 A4 A5 A6 

0 439 403796 152191 143679 40179 26588 18436 

1 457 451344 157148 147812 37692 26336 18492 

4 467 471340 157100 148196 24852 17636 14556 

5 463 459120 157064 148352 46188 27444 20008 

6 463 471340 157100 148196 24852 17636 14556 

8 479 494224 157144 148020 36664 22468 18096 

9 479 494156 157204 148228 39408 26168 18236 

10 491 519168 157096 148556 41048 25784 19084 

15 503 545388 157168 148120 19464 16376 13952 

17 523 545436 157192 148056 22608 18176 14704 

64 739 1162612 157136 148944 89676 52344 32400 

74 761 1229540 157204 148852 38560 27264 20148 

 

Conclusions on the multiplication methods: 

1. The use of complex algorithms that do not take into account the special structure of the 

polynomial with coefficients (–1, 0, 1) makes no sense. 

2. The polynomial with coefficients (–1, 0, 1) is better to be specified using non-zero elements 

indices. 

3. The use of threads in the case of module performance on the multi-core processor makes a 

sense. 

4. According to [2] for the parameters (p=739, q=9829) the number of tacts for the multiplica-

tion operation is 51488, we have 32400. 

5. According to [3] for the parameters (p=761, q=4591) the number of tacts for the multiplica-

tion operation is 28682, we have 20148. 

After completing the multiplication operation, we obtain the polynomial, whose coefficients do 

not exceed q*n, and the degree of the polynomial is 2n–1. This polynomial must first be reduced by 

modulus x
n
–x–1, after that we obtain the polynomial of degree n, and then each of n coefficients are 

reduced by modulus q. 

5.2.2. Reduced by modulus x
n
–x–1 

For reduction by modulus x
n
–x–1 it is sufficient to polynomial coefficients with indices 0…n–1 

to add (subtract) corresponding coefficients with indices n...2n–2. 

To simultaneously reduction the coefficients block using AVX operations. 

5.2.3. Reduced by modulus q. Barrett reduction 

To accelerate the method, the constants, which depend only on the values of n, q, are computed 

one time when setting parameters. 

Barrett bk, bc constants pre-calculation: 

bk is chosen such that 2
bk

>p*q 

bc=2
bk

/q is calculated. 

For each polynomial coefficient hi, it must perform the following calculations: 

hi=hi–((hi*bc)>>bk)*q.      

To simultaneously reduction by modulus q the coefficients block using AVX operations. 
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6. Encryption and decryption 

6.1. Encryption 

The encryption algorithm coincides with Algorithm 23 (ANSI X 9.98 [1]). Next, the notation is 

used from Algorithm 23. 

6.1.1. Encryption algorithm optimization 

1. For strings M and sData, intersecting memory is used. This allows you to reduce the amount 

of memory required by the message length and reduce the time it takes to copy the string for en-

cryption (Step 5 and Step 9). 

2. To accelerate the formation of Mtrin (Step 8), the bit string is processed in portions of 3 

bytes, which allows you to immediately get 8 polynomial coefficients. The case is handled correctly 

when the length of the string is not multiple 3. 

3. To exclude the need to convert a public key into a byte string (Step 9), it is stored in the con-

tainer in the form of a byte string and in the form of a polynomial. 

4. For blinding polynomial generation (Step 10) a BPGM method is used, which optimization 

will be described below. 

5. To calculate r*h (Step 11), the multiplication function is used for one or multi-core processor 

according to the execution environment. The maximum number of cores that the function uses is 4. 

6. Step 12 and Step 13 are executed as one step.  

7. The polynomial generation to mask mask (Step 14, MGF). 

8. Steps 15–18 are executed as one step in which the modules are formed and the numbers of 

values –1, 0, 1 are calculated, their correctness is checked and the ciphertext value is calculated. 

9. The result is the bytes array that we obtain by converting a polynomial into bytes array ac-

cording to the package algorithm. 

6.1.2. Optimization of the blinding polynomial calculation algorithm 

Blinding polynomial calculations are performed according to the Blinding Polynomial Genera-

tion Method (BPGM) – Algorithm 18 [1]. 

The algorithm uses the index generation function (IGF) by which the bit string (IGF state s) 

creates, with the length minCallsR*Hlen. 

6.1.3. Formation of IGF state s 

We consider 3 options for creating bit string. 

For option 1, use of the hash function as proposed in the standard [1]. To optimize the imple-

mentation of the s creation function, a constant part is formed that is used at each step of the hash 

calculation. When forming a hash, AVX commands are used. 

For option 2, when implementing the s creation function, the initial string and its length are de-

fined as for option 1, but instead of multiple recalling of the hash function, the multiple encryption 

function call for the SALSA-2.0 algorithm is used. For the next step of encrypting, the result for the 

previous step is selected. The number of steps compared to the Algorithm for option 1 is reduced 

due to the fact that the length of the initial state is longer than the length of the hash. 

For option 3, instead of the hash function, the encryption function for the SNOW-2.0 algorithm 

is used (see option 2). 

6.1.4. Calculation of coefficients 

To optimize the calculation of the polynomial coefficients in the first step, a completely array 

of coefficients is formed. At the second step, the possibility of their application is checked. If neces-

sary, the bit string is expanded. 
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6.1.5. MGF algorithm optimization 

The algorithm uses the minCallMask parameter to generate a bit string. The bit string forma-

tion optimization is made due to the fact that the constant part is used at each step of the hash calcu-

lation is calculated only once. When forming a hash, AVX commands are used. For fast conversion 

of a byte string in a polynomial, a pre-computed table is used, the entry point of which is byte and 

each row includes 5 coefficients. 

 

6.1.6. Parallel computing using 

In the encryption algorithm, 2 branches are executed in parallel. 

The first branch includes Steps 4-8 of the encryption algorithm (Algorithm 23 [1]). 

The second branch includes Steps 9-10 (Algorithm 23 [1]). 

To implement parallel branches, Open MP is used. 

6.2. Decryption 

The decryption algorithm is executed according to Algorithm 23 (ANSI X 9.98 [1]). Next, the 

notation is used from Algorithm 23 [1]. 

6.2.1. Decryption algorithm optimization 

1. Steps 1-3 are combined in one step. The multiplication algorithm is used to multiply poly-

nomials. The number of non-zero elements of received polynomial is counted simultaneously with 

its formation. 

2. Steps 4-6 are combined in one step, that allows to form in one cycle a byte row to calculate 

c0R4. 

3. Step 7 optimization. 

4. To optimize Step 8, the cycle is deployed to simultaneously receive 4 bytes of string. 

5. Steps 9, 10, 11 are combined in one step. That allowed in one cycle to form a byte string. 

6. Step 12 of the algorithm actually determines the message after the decryption. Further, the 

speculative execution of the code that uses these data may be continued. The following steps can be 

performed in parallel with the use of the obtained data. If in result of additional checks will be ob-

tained a negative result, the code execution after the use of decrypted data should be determined to 

be invalid. In case of successful additional verification, the executed code is accepted as valid. Ad-

ditional checks include Steps 13-17. 

7. For Step 13, you do not need to convert the public key into a byte string, it is stored in this 

format. 

8. Step 14 optimization to form a blinding polynomial. 

9. Step 15 polynomials multiplying. 

6.3. Time characteristics of encryption and decryption functions 

The results of the experimental research for some parameters from NTRU Prime are shown in 

Table 8. The first column defines the parameter number in the Table B Parameters [2]. Numbering 

from 0. Parameter № 64 (n=739, q=9829) is given for comparison with the data given in [2]. Pa-

rameter №74 (n=761, q=4591) is chosen for comparison with the data given in [3]. 

For encryption and decryption operations, there are 3 modes for creating a random string to 

create a blinding polynomial (hash, salsa2.0, snow2.0). For both modes, we get the best results for 

the last option. 

The last 2 columns determine the time it takes to decrypt and verify the decryption correctness. 

In the case of parallel execution of the verification operation with other encryption-decryption op-

erations, you can balance the time required for encryption and decryption. 

The last row in the table specifies the results obtained for the parameters specified in [3]. These 

parameters correspond to a cryptographic stability of more than 200. 
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Authors [3] received the results: 

Encryption: 59600 and decryption 97452 cycles respectively. 

 
                                                                                                                          Table 8 

Time characteristics of encryption and decryption functions 

№ N Q Encrypt Decrypt Decrypt 

   Hash Salsa2.0 Snow2.0 Hash Salsa2.0 Snow2.0 Decrypt Check 

0 439 6833 56364 40456 35408 81356 64280 60016 29048 28508 

1 457 6037 62712 38200 33712 87948 61448 56868 30500 28496 

4 467 3911 52340 32016 29252 72760 51528 48532 26908 23320 

5 463 6529 64336 39124 35288 90484 63256 59072 32352 29220 

6 463 6841 66240 40628 36268 94884 66448 61464 32336 30884 

8 479 5689 62800 38396 34144 87748 61556 57320 31000 28360 

9 479 6089 64444 39072 34796 90624 62596 58352 32168 28948 

10 491 6287 67464 41304 36188 94220 65984 61500 31368 30600 

15 503 2879 50460 30536 27844 87748 61556 47116 31000 28360 

17 523 3331 54192 33112 30812 90624 62596 51224 32168 28948 

64 739 9829 104916 61597 53876 145516 100152 93224 48636 46488 

74 761 4591 73456 44120 40032 100140 71480 67728 37580 30920 

 

In the case of the hash using, our encryption operation implementation loses the specified ones 

in the paper by 25%, and the decryption operation – 5%. When using encryption algorithms, our 

implementation wins 30% for encryption algorithm and 29% for decryption algorithm. 

In [4] – one of the algorithms submitted to the competition (Kyber), the following performance 

data after optimization using AVX2 are given: 

Encryption – 119652; 

Decryption – 125736. 

Compared to our results for the best option, we get the winning: 65% for encryption and 44% 

for decryption. 

Conclusions 

In view of the above, the following conclusions can be made. 

1. In the cryptosystem «NTRU Prime IIT Ukraine» as the main cryptographic transformation, 

as in NTRU Prime, unlike NTRU, the transformation is used in the finite field. The above makes it 

impossible to conduct a series of potential attacks regarding the cryptographic system «NTRU 

Prime IIT Ukraine» and eliminates the potential weaknesses present in the NTRU cryptosystem. 

They are mainly related to the existence of non-trivial subfields or factor rings of the factor (trun-

cated) polynomials ring. 

2. In the cryptosystem «NTRU Prime IIT Ukraine» polynomials F  and r  are arbitrary t -

small, they have 2t  non-zero coefficients (+1, 1 ), whereas in NTRU, each of these polynomials 

has exactly t  nonzero coefficients equal to 1 and 1  respectively. The same is true for the polyno-

mial g  used in the cryptosystem «NTRU Prime IIT Ukraine», which is an arbitrary small polyno-

mial with 2t  nonzero coefficients (+1, 1 ). Specified allows to expand the size of the key space in 

comparison with NTRU without losing the efficiency of algorithms implementation for the keys 

formation and implementation of encryption and decryption algorithms. 

3. During optimization great attention was paid to multiplication operation, as it is the most 

time consuming. Usage of complex multiplying algorithms, which don’t take into account special 

polynomial structure with coefficients ( 1 , 0, 1) doesn’t make a sense. The polynomial with coeffi-

cients ( 1 , 0, 1) is better to be specified using non-zero elements indices. The use of threads in case 

of reduction by modulus on the multi-core processor makes a sense. Usage of AVX2 operations for 

reduction by modulus polynomial 1nx x   and prime q  and for Barrett algorithm for reduction by 

modulus q  are effective and accelerates multiplication speed. 
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4. Three algorithms of blinding polynomial formation were studied (hash, salsa2.0, snow2.0), 

the best time rates were obtained for Snow 2.0. 
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